You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

621 lines
19 KiB

#include <argp.h>
#include <inttypes.h>
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#ifdef HAVE_PROFILER
#include <gperftools/profiler.h>
#endif
#include <sylvan.h>
#include <sylvan_table.h>
/* Configuration */
static int report_levels = 0; // report states at end of every level
static int report_table = 0; // report table size at end of every level
static int report_nodes = 0; // report number of nodes of BDDs
static int strategy = 1; // set to 1 = use PAR strategy; set to 0 = use BFS strategy
static int check_deadlocks = 0; // set to 1 to check for deadlocks
static int merge_relations = 0; // merge relations to 1 relation
static int print_transition_matrix = 0; // print transition relation matrix
static int workers = 0; // autodetect
static char* model_filename = NULL; // filename of model
#ifdef HAVE_PROFILER
static char* profile_filename = NULL; // filename for profiling
#endif
/* argp configuration */
static struct argp_option options[] =
{
{"workers", 'w', "<workers>", 0, "Number of workers (default=0: autodetect)", 0},
{"strategy", 's', "<bfs|par|sat>", 0, "Strategy for reachability (default=par)", 0},
#ifdef HAVE_PROFILER
{"profiler", 'p', "<filename>", 0, "Filename for profiling", 0},
#endif
{"deadlocks", 3, 0, 0, "Check for deadlocks", 1},
{"count-nodes", 5, 0, 0, "Report #nodes for BDDs", 1},
{"count-states", 1, 0, 0, "Report #states at each level", 1},
{"count-table", 2, 0, 0, "Report table usage at each level", 1},
{"merge-relations", 6, 0, 0, "Merge transition relations into one transition relation", 1},
{"print-matrix", 4, 0, 0, "Print transition matrix", 1},
{0, 0, 0, 0, 0, 0}
};
static error_t
parse_opt(int key, char *arg, struct argp_state *state)
{
switch (key) {
case 'w':
workers = atoi(arg);
break;
case 's':
if (strcmp(arg, "bfs")==0) strategy = 0;
else if (strcmp(arg, "par")==0) strategy = 1;
else if (strcmp(arg, "sat")==0) strategy = 2;
else argp_usage(state);
break;
case 4:
print_transition_matrix = 1;
break;
case 3:
check_deadlocks = 1;
break;
case 1:
report_levels = 1;
break;
case 2:
report_table = 1;
break;
case 5:
report_nodes = 1;
break;
case 6:
merge_relations = 1;
break;
#ifdef HAVE_PROFILER
case 'p':
profile_filename = arg;
break;
#endif
case ARGP_KEY_ARG:
if (state->arg_num >= 1) argp_usage(state);
model_filename = arg;
break;
case ARGP_KEY_END:
if (state->arg_num < 1) argp_usage(state);
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static struct argp argp = { options, parse_opt, "<model>", 0, 0, 0, 0 };
/* Globals */
typedef struct set
{
BDD bdd;
BDD variables; // all variables in the set (used by satcount)
} *set_t;
typedef struct relation
{
BDD bdd;
BDD variables; // all variables in the relation (used by relprod)
} *rel_t;
static int vector_size; // size of vector
static int statebits, actionbits; // number of bits for state, number of bits for action
static int bits_per_integer; // number of bits per integer in the vector
static int next_count; // number of partitions of the transition relation
static rel_t *next; // each partition of the transition relation
/* Obtain current wallclock time */
static double
wctime()
{
struct timeval tv;
gettimeofday(&tv, NULL);
return (tv.tv_sec + 1E-6 * tv.tv_usec);
}
static double t_start;
#define INFO(s, ...) fprintf(stdout, "[% 8.2f] " s, wctime()-t_start, ##__VA_ARGS__)
#define Abort(...) { fprintf(stderr, __VA_ARGS__); exit(-1); }
/* Load a set from file */
#define set_load(f) CALL(set_load, f)
TASK_1(set_t, set_load, FILE*, f)
{
sylvan_serialize_fromfile(f);
size_t set_bdd, set_vector_size, set_state_vars;
if ((fread(&set_bdd, sizeof(size_t), 1, f) != 1) ||
(fread(&set_vector_size, sizeof(size_t), 1, f) != 1) ||
(fread(&set_state_vars, sizeof(size_t), 1, f) != 1)) {
Abort("Invalid input file!\n");
}
set_t set = (set_t)malloc(sizeof(struct set));
set->bdd = sylvan_serialize_get_reversed(set_bdd);
set->variables = sylvan_support(sylvan_serialize_get_reversed(set_state_vars));
sylvan_protect(&set->bdd);
sylvan_protect(&set->variables);
return set;
}
/* Load a relation from file */
#define rel_load(f) CALL(rel_load, f)
TASK_1(rel_t, rel_load, FILE*, f)
{
sylvan_serialize_fromfile(f);
size_t rel_bdd, rel_vars;
if ((fread(&rel_bdd, sizeof(size_t), 1, f) != 1) ||
(fread(&rel_vars, sizeof(size_t), 1, f) != 1)) {
Abort("Invalid input file!\n");
}
rel_t rel = (rel_t)malloc(sizeof(struct relation));
rel->bdd = sylvan_serialize_get_reversed(rel_bdd);
rel->variables = sylvan_support(sylvan_serialize_get_reversed(rel_vars));
sylvan_protect(&rel->bdd);
sylvan_protect(&rel->variables);
return rel;
}
#define print_example(example, variables) CALL(print_example, example, variables)
VOID_TASK_2(print_example, BDD, example, BDDSET, variables)
{
uint8_t str[vector_size * bits_per_integer];
if (example != sylvan_false) {
sylvan_sat_one(example, variables, str);
printf("[");
for (int i=0; i<vector_size; i++) {
uint32_t res = 0;
for (int j=0; j<bits_per_integer; j++) {
if (str[bits_per_integer*i+j] == 1) res++;
res<<=1;
}
if (i>0) printf(",");
printf("%" PRIu32, res);
}
printf("]");
}
}
/* Straight-forward implementation of parallel reduction */
TASK_5(BDD, go_par, BDD, cur, BDD, visited, size_t, from, size_t, len, BDD*, deadlocks)
{
if (len == 1) {
// Calculate NEW successors (not in visited)
BDD succ = sylvan_relnext(cur, next[from]->bdd, next[from]->variables);
bdd_refs_push(succ);
if (deadlocks) {
// check which BDDs in deadlocks do not have a successor in this relation
BDD anc = sylvan_relprev(next[from]->bdd, succ, next[from]->variables);
bdd_refs_push(anc);
*deadlocks = sylvan_diff(*deadlocks, anc);
bdd_refs_pop(1);
}
BDD result = sylvan_diff(succ, visited);
bdd_refs_pop(1);
return result;
} else {
BDD deadlocks_left;
BDD deadlocks_right;
if (deadlocks) {
deadlocks_left = *deadlocks;
deadlocks_right = *deadlocks;
sylvan_protect(&deadlocks_left);
sylvan_protect(&deadlocks_right);
}
// Recursively calculate left+right
bdd_refs_spawn(SPAWN(go_par, cur, visited, from, (len+1)/2, deadlocks ? &deadlocks_left: NULL));
BDD right = bdd_refs_push(CALL(go_par, cur, visited, from+(len+1)/2, len/2, deadlocks ? &deadlocks_right : NULL));
BDD left = bdd_refs_push(bdd_refs_sync(SYNC(go_par)));
// Merge results of left+right
BDD result = sylvan_or(left, right);
bdd_refs_pop(2);
if (deadlocks) {
bdd_refs_push(result);
*deadlocks = sylvan_and(deadlocks_left, deadlocks_right);
sylvan_unprotect(&deadlocks_left);
sylvan_unprotect(&deadlocks_right);
bdd_refs_pop(1);
}
return result;
}
}
/* PAR strategy, parallel strategy (operations called in parallel *and* parallelized by Sylvan) */
VOID_TASK_1(par, set_t, set)
{
BDD visited = set->bdd;
BDD next_level = visited;
BDD cur_level = sylvan_false;
BDD deadlocks = sylvan_false;
sylvan_protect(&visited);
sylvan_protect(&next_level);
sylvan_protect(&cur_level);
sylvan_protect(&deadlocks);
int iteration = 1;
do {
// calculate successors in parallel
cur_level = next_level;
deadlocks = cur_level;
next_level = CALL(go_par, cur_level, visited, 0, next_count, check_deadlocks ? &deadlocks : NULL);
if (check_deadlocks && deadlocks != sylvan_false) {
INFO("Found %'0.0f deadlock states... ", sylvan_satcount(deadlocks, set->variables));
if (deadlocks != sylvan_false) {
printf("example: ");
print_example(deadlocks, set->variables);
check_deadlocks = 0;
}
printf("\n");
}
// visited = visited + new
visited = sylvan_or(visited, next_level);
if (report_table && report_levels) {
size_t filled, total;
sylvan_table_usage(&filled, &total);
INFO("Level %d done, %'0.0f states explored, table: %0.1f%% full (%'zu nodes)\n",
iteration, sylvan_satcount(visited, set->variables),
100.0*(double)filled/total, filled);
} else if (report_table) {
size_t filled, total;
sylvan_table_usage(&filled, &total);
INFO("Level %d done, table: %0.1f%% full (%'zu nodes)\n",
iteration,
100.0*(double)filled/total, filled);
} else if (report_levels) {
INFO("Level %d done, %'0.0f states explored\n", iteration, sylvan_satcount(visited, set->variables));
} else {
INFO("Level %d done\n", iteration);
}
iteration++;
} while (next_level != sylvan_false);
set->bdd = visited;
sylvan_unprotect(&visited);
sylvan_unprotect(&next_level);
sylvan_unprotect(&cur_level);
sylvan_unprotect(&deadlocks);
}
/* Sequential version of merge-reduction */
TASK_5(BDD, go_bfs, BDD, cur, BDD, visited, size_t, from, size_t, len, BDD*, deadlocks)
{
if (len == 1) {
// Calculate NEW successors (not in visited)
BDD succ = sylvan_relnext(cur, next[from]->bdd, next[from]->variables);
bdd_refs_push(succ);
if (deadlocks) {
// check which BDDs in deadlocks do not have a successor in this relation
BDD anc = sylvan_relprev(next[from]->bdd, succ, next[from]->variables);
bdd_refs_push(anc);
*deadlocks = sylvan_diff(*deadlocks, anc);
bdd_refs_pop(1);
}
BDD result = sylvan_diff(succ, visited);
bdd_refs_pop(1);
return result;
} else {
BDD deadlocks_left;
BDD deadlocks_right;
if (deadlocks) {
deadlocks_left = *deadlocks;
deadlocks_right = *deadlocks;
sylvan_protect(&deadlocks_left);
sylvan_protect(&deadlocks_right);
}
// Recursively calculate left+right
BDD left = CALL(go_bfs, cur, visited, from, (len+1)/2, deadlocks ? &deadlocks_left : NULL);
bdd_refs_push(left);
BDD right = CALL(go_bfs, cur, visited, from+(len+1)/2, len/2, deadlocks ? &deadlocks_right : NULL);
bdd_refs_push(right);
// Merge results of left+right
BDD result = sylvan_or(left, right);
bdd_refs_pop(2);
if (deadlocks) {
bdd_refs_push(result);
*deadlocks = sylvan_and(deadlocks_left, deadlocks_right);
sylvan_unprotect(&deadlocks_left);
sylvan_unprotect(&deadlocks_right);
bdd_refs_pop(1);
}
return result;
}
}
/* BFS strategy, sequential strategy (but operations are parallelized by Sylvan) */
VOID_TASK_1(bfs, set_t, set)
{
BDD visited = set->bdd;
BDD next_level = visited;
BDD cur_level = sylvan_false;
BDD deadlocks = sylvan_false;
sylvan_protect(&visited);
sylvan_protect(&next_level);
sylvan_protect(&cur_level);
sylvan_protect(&deadlocks);
int iteration = 1;
do {
// calculate successors in parallel
cur_level = next_level;
deadlocks = cur_level;
next_level = CALL(go_bfs, cur_level, visited, 0, next_count, check_deadlocks ? &deadlocks : NULL);
if (check_deadlocks && deadlocks != sylvan_false) {
INFO("Found %'0.0f deadlock states... ", sylvan_satcount(deadlocks, set->variables));
if (deadlocks != sylvan_false) {
printf("example: ");
print_example(deadlocks, set->variables);
check_deadlocks = 0;
}
printf("\n");
}
// visited = visited + new
visited = sylvan_or(visited, next_level);
if (report_table && report_levels) {
size_t filled, total;
sylvan_table_usage(&filled, &total);
INFO("Level %d done, %'0.0f states explored, table: %0.1f%% full (%'zu nodes)\n",
iteration, sylvan_satcount(visited, set->variables),
100.0*(double)filled/total, filled);
} else if (report_table) {
size_t filled, total;
sylvan_table_usage(&filled, &total);
INFO("Level %d done, table: %0.1f%% full (%'zu nodes)\n",
iteration,
100.0*(double)filled/total, filled);
} else if (report_levels) {
INFO("Level %d done, %'0.0f states explored\n", iteration, sylvan_satcount(visited, set->variables));
} else {
INFO("Level %d done\n", iteration);
}
iteration++;
} while (next_level != sylvan_false);
set->bdd = visited;
sylvan_unprotect(&visited);
sylvan_unprotect(&next_level);
sylvan_unprotect(&cur_level);
sylvan_unprotect(&deadlocks);
}
/**
* Extend a transition relation to a larger domain (using s=s')
*/
#define extend_relation(rel, vars) CALL(extend_relation, rel, vars)
TASK_2(BDD, extend_relation, BDD, relation, BDDSET, variables)
{
/* first determine which state BDD variables are in rel */
int has[statebits];
for (int i=0; i<statebits; i++) has[i] = 0;
BDDSET s = variables;
while (!sylvan_set_isempty(s)) {
BDDVAR v = sylvan_set_first(s);
if (v/2 >= (unsigned)statebits) break; // action labels
has[v/2] = 1;
s = sylvan_set_next(s);
}
/* create "s=s'" for all variables not in rel */
BDD eq = sylvan_true;
for (int i=statebits-1; i>=0; i--) {
if (has[i]) continue;
BDD low = sylvan_makenode(2*i+1, eq, sylvan_false);
bdd_refs_push(low);
BDD high = sylvan_makenode(2*i+1, sylvan_false, eq);
bdd_refs_pop(1);
eq = sylvan_makenode(2*i, low, high);
}
bdd_refs_push(eq);
BDD result = sylvan_and(relation, eq);
bdd_refs_pop(1);
return result;
}
/**
* Compute \BigUnion ( sets[i] )
*/
#define big_union(first, count) CALL(big_union, first, count)
TASK_2(BDD, big_union, int, first, int, count)
{
if (count == 1) return next[first]->bdd;
bdd_refs_spawn(SPAWN(big_union, first, count/2));
BDD right = bdd_refs_push(CALL(big_union, first+count/2, count-count/2));
BDD left = bdd_refs_push(bdd_refs_sync(SYNC(big_union)));
BDD result = sylvan_or(left, right);
bdd_refs_pop(2);
return result;
}
static void
print_matrix(BDD vars)
{
for (int i=0; i<vector_size; i++) {
if (sylvan_set_isempty(vars)) {
fprintf(stdout, "-");
} else {
BDDVAR next_s = 2*((i+1)*bits_per_integer);
if (sylvan_set_first(vars) < next_s) {
fprintf(stdout, "+");
for (;;) {
vars = sylvan_set_next(vars);
if (sylvan_set_isempty(vars)) break;
if (sylvan_set_first(vars) >= next_s) break;
}
} else {
fprintf(stdout, "-");
}
}
}
}
VOID_TASK_0(gc_start)
{
INFO("(GC) Starting garbage collection...\n");
}
VOID_TASK_0(gc_end)
{
INFO("(GC) Garbage collection done.\n");
}
int
main(int argc, char **argv)
{
argp_parse(&argp, argc, argv, 0, 0, 0);
setlocale(LC_NUMERIC, "en_US.utf-8");
t_start = wctime();
FILE *f = fopen(model_filename, "r");
if (f == NULL) {
fprintf(stderr, "Cannot open file '%s'!\n", model_filename);
return -1;
}
// Init Lace
lace_init(workers, 1000000); // auto-detect number of workers, use a 1,000,000 size task queue
lace_startup(0, NULL, NULL); // auto-detect program stack, do not use a callback for startup
LACE_ME;
// Init Sylvan
// Nodes table size: 24 bytes * 2**N_nodes
// Cache table size: 36 bytes * 2**N_cache
// With: N_nodes=25, N_cache=24: 1.3 GB memory
sylvan_set_sizes(1LL<<21, 1LL<<27, 1LL<<20, 1LL<<26);
sylvan_init_package();
sylvan_set_granularity(6); // granularity 6 is decent default value - 1 means "use cache for every operation"
sylvan_init_bdd();
sylvan_gc_hook_pregc(TASK(gc_start));
sylvan_gc_hook_postgc(TASK(gc_end));
/* Load domain information */
if ((fread(&vector_size, sizeof(int), 1, f) != 1) ||
(fread(&statebits, sizeof(int), 1, f) != 1) ||
(fread(&actionbits, sizeof(int), 1, f) != 1)) {
Abort("Invalid input file!\n");
}
bits_per_integer = statebits;
statebits *= vector_size;
// Read initial state
set_t states = set_load(f);
// Read transitions
if (fread(&next_count, sizeof(int), 1, f) != 1) Abort("Invalid input file!\n");
next = (rel_t*)malloc(sizeof(rel_t) * next_count);
int i;
for (i=0; i<next_count; i++) {
next[i] = rel_load(f);
}
/* Done */
fclose(f);
if (print_transition_matrix) {
for (i=0; i<next_count; i++) {
INFO("");
print_matrix(next[i]->variables);
fprintf(stdout, "\n");
}
}
// Report statistics
INFO("Read file '%s'\n", model_filename);
INFO("%d integers per state, %d bits per integer, %d transition groups\n", vector_size, bits_per_integer, next_count);
if (merge_relations) {
BDD prime_variables = sylvan_set_empty();
for (int i=statebits-1; i>=0; i--) {
bdd_refs_push(prime_variables);
prime_variables = sylvan_set_add(prime_variables, i*2+1);
bdd_refs_pop(1);
}
bdd_refs_push(prime_variables);
INFO("Extending transition relations to full domain.\n");
for (int i=0; i<next_count; i++) {
next[i]->bdd = extend_relation(next[i]->bdd, next[i]->variables);
next[i]->variables = prime_variables;
}
INFO("Taking union of all transition relations.\n");
next[0]->bdd = big_union(0, next_count);
next_count = 1;
}
if (report_nodes) {
INFO("BDD nodes:\n");
INFO("Initial states: %zu BDD nodes\n", sylvan_nodecount(states->bdd));
for (i=0; i<next_count; i++) {
INFO("Transition %d: %zu BDD nodes\n", i, sylvan_nodecount(next[i]->bdd));
}
}
#ifdef HAVE_PROFILER
if (profile_filename != NULL) ProfilerStart(profile_filename);
#endif
if (strategy == 1) {
double t1 = wctime();
CALL(par, states);
double t2 = wctime();
INFO("PAR Time: %f\n", t2-t1);
} else {
double t1 = wctime();
CALL(bfs, states);
double t2 = wctime();
INFO("BFS Time: %f\n", t2-t1);
}
#ifdef HAVE_PROFILER
if (profile_filename != NULL) ProfilerStop();
#endif
// Now we just have states
INFO("Final states: %'0.0f states\n", sylvan_satcount(states->bdd, states->variables));
if (report_nodes) {
INFO("Final states: %'zu BDD nodes\n", sylvan_nodecount(states->bdd));
}
sylvan_stats_report(stdout);
return 0;
}