You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							89 lines
						
					
					
						
							2.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							89 lines
						
					
					
						
							2.6 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "common.h"
							 | 
						|
								#include <Eigen/LU>
							 | 
						|
								
							 | 
						|
								// computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges
							 | 
						|
								EIGEN_LAPACK_FUNC(getrf,(int *m, int *n, RealScalar *pa, int *lda, int *ipiv, int *info))
							 | 
						|
								{
							 | 
						|
								  *info = 0;
							 | 
						|
								        if(*m<0)                  *info = -1;
							 | 
						|
								  else  if(*n<0)                  *info = -2;
							 | 
						|
								  else  if(*lda<std::max(1,*m))   *info = -4;
							 | 
						|
								  if(*info!=0)
							 | 
						|
								  {
							 | 
						|
								    int e = -*info;
							 | 
						|
								    return xerbla_(SCALAR_SUFFIX_UP"GETRF", &e, 6);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  if(*m==0 || *n==0)
							 | 
						|
								    return 0;
							 | 
						|
								
							 | 
						|
								  Scalar* a = reinterpret_cast<Scalar*>(pa);
							 | 
						|
								  int nb_transpositions;
							 | 
						|
								  int ret = Eigen::internal::partial_lu_impl<Scalar,ColMajor,int>
							 | 
						|
								                 ::blocked_lu(*m, *n, a, *lda, ipiv, nb_transpositions);
							 | 
						|
								
							 | 
						|
								  for(int i=0; i<std::min(*m,*n); ++i)
							 | 
						|
								    ipiv[i]++;
							 | 
						|
								
							 | 
						|
								  if(ret>=0)
							 | 
						|
								    *info = ret+1;
							 | 
						|
								
							 | 
						|
								  return 0;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								//GETRS solves a system of linear equations
							 | 
						|
								//    A * X = B  or  A' * X = B
							 | 
						|
								//  with a general N-by-N matrix A using the LU factorization computed  by GETRF
							 | 
						|
								EIGEN_LAPACK_FUNC(getrs,(char *trans, int *n, int *nrhs, RealScalar *pa, int *lda, int *ipiv, RealScalar *pb, int *ldb, int *info))
							 | 
						|
								{
							 | 
						|
								  *info = 0;
							 | 
						|
								        if(OP(*trans)==INVALID)  *info = -1;
							 | 
						|
								  else  if(*n<0)                 *info = -2;
							 | 
						|
								  else  if(*nrhs<0)              *info = -3;
							 | 
						|
								  else  if(*lda<std::max(1,*n))  *info = -5;
							 | 
						|
								  else  if(*ldb<std::max(1,*n))  *info = -8;
							 | 
						|
								  if(*info!=0)
							 | 
						|
								  {
							 | 
						|
								    int e = -*info;
							 | 
						|
								    return xerbla_(SCALAR_SUFFIX_UP"GETRS", &e, 6);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  Scalar* a = reinterpret_cast<Scalar*>(pa);
							 | 
						|
								  Scalar* b = reinterpret_cast<Scalar*>(pb);
							 | 
						|
								  MatrixType lu(a,*n,*n,*lda);
							 | 
						|
								  MatrixType B(b,*n,*nrhs,*ldb);
							 | 
						|
								
							 | 
						|
								  for(int i=0; i<*n; ++i)
							 | 
						|
								    ipiv[i]--;
							 | 
						|
								  if(OP(*trans)==NOTR)
							 | 
						|
								  {
							 | 
						|
								    B = PivotsType(ipiv,*n) * B;
							 | 
						|
								    lu.triangularView<UnitLower>().solveInPlace(B);
							 | 
						|
								    lu.triangularView<Upper>().solveInPlace(B);
							 | 
						|
								  }
							 | 
						|
								  else if(OP(*trans)==TR)
							 | 
						|
								  {
							 | 
						|
								    lu.triangularView<Upper>().transpose().solveInPlace(B);
							 | 
						|
								    lu.triangularView<UnitLower>().transpose().solveInPlace(B);
							 | 
						|
								    B = PivotsType(ipiv,*n).transpose() * B;
							 | 
						|
								  }
							 | 
						|
								  else if(OP(*trans)==ADJ)
							 | 
						|
								  {
							 | 
						|
								    lu.triangularView<Upper>().adjoint().solveInPlace(B);
							 | 
						|
								    lu.triangularView<UnitLower>().adjoint().solveInPlace(B);
							 | 
						|
								    B = PivotsType(ipiv,*n).transpose() * B;
							 | 
						|
								  }
							 | 
						|
								  for(int i=0; i<*n; ++i)
							 | 
						|
								    ipiv[i]++;
							 | 
						|
								
							 | 
						|
								  return 0;
							 | 
						|
								}
							 |