You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							132 lines
						
					
					
						
							5.4 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							132 lines
						
					
					
						
							5.4 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
							 | 
						|
								// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								static bool g_called;
							 | 
						|
								#define STORMEIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN { g_called = true; }
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void linearStructure(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  using std::abs;
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h 
							 | 
						|
								  */
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  // this test relies a lot on Random.h, and there's not much more that we can do
							 | 
						|
								  // to test it, hence I consider that we will have tested Random.h
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols),
							 | 
						|
								             m2 = MatrixType::Random(rows, cols),
							 | 
						|
								             m3(rows, cols);
							 | 
						|
								
							 | 
						|
								  Scalar s1 = internal::random<Scalar>();
							 | 
						|
								  while (abs(s1)<1e-3) s1 = internal::random<Scalar>();
							 | 
						|
								
							 | 
						|
								  Index r = internal::random<Index>(0, rows-1),
							 | 
						|
								        c = internal::random<Index>(0, cols-1);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(-(-m1),                  m1);
							 | 
						|
								  VERIFY_IS_APPROX(m1+m1,                   2*m1);
							 | 
						|
								  VERIFY_IS_APPROX(m1+m2-m1,                m2);
							 | 
						|
								  VERIFY_IS_APPROX(-m2+m1+m2,               m1);
							 | 
						|
								  VERIFY_IS_APPROX(m1*s1,                   s1*m1);
							 | 
						|
								  VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2);
							 | 
						|
								  VERIFY_IS_APPROX((-m1+m2)*s1,             -s1*m1+s1*m2);
							 | 
						|
								  m3 = m2; m3 += m1;
							 | 
						|
								  VERIFY_IS_APPROX(m3,                      m1+m2);
							 | 
						|
								  m3 = m2; m3 -= m1;
							 | 
						|
								  VERIFY_IS_APPROX(m3,                      m2-m1);
							 | 
						|
								  m3 = m2; m3 *= s1;
							 | 
						|
								  VERIFY_IS_APPROX(m3,                      s1*m2);
							 | 
						|
								  if(!NumTraits<Scalar>::IsInteger)
							 | 
						|
								  {
							 | 
						|
								    m3 = m2; m3 /= s1;
							 | 
						|
								    VERIFY_IS_APPROX(m3,                    m2/s1);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // again, test operator() to check const-qualification
							 | 
						|
								  VERIFY_IS_APPROX((-m1)(r,c), -(m1(r,c)));
							 | 
						|
								  VERIFY_IS_APPROX((m1-m2)(r,c), (m1(r,c))-(m2(r,c)));
							 | 
						|
								  VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
							 | 
						|
								  VERIFY_IS_APPROX((s1*m1)(r,c), s1*(m1(r,c)));
							 | 
						|
								  VERIFY_IS_APPROX((m1*s1)(r,c), (m1(r,c))*s1);
							 | 
						|
								  if(!NumTraits<Scalar>::IsInteger)
							 | 
						|
								    VERIFY_IS_APPROX((m1/s1)(r,c), (m1(r,c))/s1);
							 | 
						|
								
							 | 
						|
								  // use .block to disable vectorization and compare to the vectorized version
							 | 
						|
								  VERIFY_IS_APPROX(m1+m1.block(0,0,rows,cols), m1+m1);
							 | 
						|
								  VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), m1.cwiseProduct(m1));
							 | 
						|
								  VERIFY_IS_APPROX(m1 - m1.block(0,0,rows,cols), m1 - m1);
							 | 
						|
								  VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// Make sure that complex * real and real * complex are properly optimized
							 | 
						|
								template<typename MatrixType> void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename MatrixType::RealScalar RealScalar;
							 | 
						|
								  
							 | 
						|
								  RealScalar s = internal::random<RealScalar>();
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols);
							 | 
						|
								  
							 | 
						|
								  g_called = false;
							 | 
						|
								  VERIFY_IS_APPROX(s*m1, Scalar(s)*m1);
							 | 
						|
								  VERIFY(g_called && "real * matrix<complex> not properly optimized");
							 | 
						|
								  
							 | 
						|
								  g_called = false;
							 | 
						|
								  VERIFY_IS_APPROX(m1*s, m1*Scalar(s));
							 | 
						|
								  VERIFY(g_called && "matrix<complex> * real not properly optimized");
							 | 
						|
								  
							 | 
						|
								  g_called = false;
							 | 
						|
								  VERIFY_IS_APPROX(m1/s, m1/Scalar(s));
							 | 
						|
								  VERIFY(g_called && "matrix<complex> / real not properly optimized");
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_linearstructure()
							 | 
						|
								{
							 | 
						|
								  g_called = true;
							 | 
						|
								  VERIFY(g_called); // avoid `unneeded-internal-declaration` warning.
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( linearStructure(Matrix<float, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_2( linearStructure(Matrix2f()) );
							 | 
						|
								    CALL_SUBTEST_3( linearStructure(Vector3d()) );
							 | 
						|
								    CALL_SUBTEST_4( linearStructure(Matrix4d()) );
							 | 
						|
								    CALL_SUBTEST_5( linearStructure(MatrixXcf(internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE/2))) );
							 | 
						|
								    CALL_SUBTEST_6( linearStructure(MatrixXf (internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_7( linearStructure(MatrixXi (internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_8( linearStructure(MatrixXcd(internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE/2))) );
							 | 
						|
								    CALL_SUBTEST_9( linearStructure(ArrayXXf (internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_10( linearStructure(ArrayXXcf (internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    
							 | 
						|
								    CALL_SUBTEST_11( real_complex<Matrix4cd>() );
							 | 
						|
								    CALL_SUBTEST_11( real_complex<MatrixXcf>(10,10) );
							 | 
						|
								    CALL_SUBTEST_11( real_complex<ArrayXXcf>(10,10) );
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								#ifdef STORMEIGEN_TEST_PART_4
							 | 
						|
								  {
							 | 
						|
								    // make sure that /=scalar and /scalar do not overflow
							 | 
						|
								    // rational: 1.0/4.94e-320 overflow, but m/4.94e-320 should not
							 | 
						|
								    Matrix4d m2, m3;
							 | 
						|
								    m3 = m2 =  Matrix4d::Random()*1e-20;
							 | 
						|
								    m2 = m2 / 4.9e-320;
							 | 
						|
								    VERIFY_IS_APPROX(m2.cwiseQuotient(m2), Matrix4d::Ones());
							 | 
						|
								    m3 /= 4.9e-320;
							 | 
						|
								    VERIFY_IS_APPROX(m3.cwiseQuotient(m3), Matrix4d::Ones());
							 | 
						|
								    
							 | 
						|
								    
							 | 
						|
								  }
							 | 
						|
								#endif
							 | 
						|
								}
							 |