You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							290 lines
						
					
					
						
							10 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							290 lines
						
					
					
						
							10 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <StormEigen/Geometry>
							 | 
						|
								#include <StormEigen/LU>
							 | 
						|
								#include <StormEigen/SVD>
							 | 
						|
								
							 | 
						|
								template<typename T> T bounded_acos(T v)
							 | 
						|
								{
							 | 
						|
								  using std::acos;
							 | 
						|
								  using std::min;
							 | 
						|
								  using std::max;
							 | 
						|
								  return acos((max)(T(-1),(min)(v,T(1))));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1)
							 | 
						|
								{
							 | 
						|
								  using std::abs;
							 | 
						|
								  typedef typename QuatType::Scalar Scalar;
							 | 
						|
								  typedef AngleAxis<Scalar> AA;
							 | 
						|
								
							 | 
						|
								  Scalar largeEps = test_precision<Scalar>();
							 | 
						|
								
							 | 
						|
								  Scalar theta_tot = AA(q1*q0.inverse()).angle();
							 | 
						|
								  if(theta_tot>STORMEIGEN_PI)
							 | 
						|
								    theta_tot = Scalar(2.*STORMEIGEN_PI)-theta_tot;
							 | 
						|
								  for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1))
							 | 
						|
								  {
							 | 
						|
								    QuatType q = q0.slerp(t,q1);
							 | 
						|
								    Scalar theta = AA(q*q0.inverse()).angle();
							 | 
						|
								    VERIFY(abs(q.norm() - 1) < largeEps);
							 | 
						|
								    if(theta_tot==0)  VERIFY(theta_tot==0);
							 | 
						|
								    else              VERIFY(abs(theta - t * theta_tot) < largeEps);
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Scalar, int Options> void quaternion(void)
							 | 
						|
								{
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     Quaternion.h
							 | 
						|
								  */
							 | 
						|
								  using std::abs;
							 | 
						|
								  typedef Matrix<Scalar,3,1> Vector3;
							 | 
						|
								  typedef Matrix<Scalar,3,3> Matrix3;
							 | 
						|
								  typedef Matrix<Scalar,4,1> Vector4;
							 | 
						|
								  typedef Quaternion<Scalar,Options> Quaternionx;
							 | 
						|
								  typedef AngleAxis<Scalar> AngleAxisx;
							 | 
						|
								
							 | 
						|
								  Scalar largeEps = test_precision<Scalar>();
							 | 
						|
								  if (internal::is_same<Scalar,float>::value)
							 | 
						|
								    largeEps = 1e-3f;
							 | 
						|
								
							 | 
						|
								  Scalar eps = internal::random<Scalar>() * Scalar(1e-2);
							 | 
						|
								
							 | 
						|
								  Vector3 v0 = Vector3::Random(),
							 | 
						|
								          v1 = Vector3::Random(),
							 | 
						|
								          v2 = Vector3::Random(),
							 | 
						|
								          v3 = Vector3::Random();
							 | 
						|
								
							 | 
						|
								  Scalar  a = internal::random<Scalar>(-Scalar(STORMEIGEN_PI), Scalar(STORMEIGEN_PI)),
							 | 
						|
								          b = internal::random<Scalar>(-Scalar(STORMEIGEN_PI), Scalar(STORMEIGEN_PI));
							 | 
						|
								
							 | 
						|
								  // Quaternion: Identity(), setIdentity();
							 | 
						|
								  Quaternionx q1, q2;
							 | 
						|
								  q2.setIdentity();
							 | 
						|
								  VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
							 | 
						|
								  q1.coeffs().setRandom();
							 | 
						|
								  VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
							 | 
						|
								
							 | 
						|
								  // concatenation
							 | 
						|
								  q1 *= q2;
							 | 
						|
								
							 | 
						|
								  q1 = AngleAxisx(a, v0.normalized());
							 | 
						|
								  q2 = AngleAxisx(a, v1.normalized());
							 | 
						|
								
							 | 
						|
								  // angular distance
							 | 
						|
								  Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle());
							 | 
						|
								  if (refangle>Scalar(STORMEIGEN_PI))
							 | 
						|
								    refangle = Scalar(2)*Scalar(STORMEIGEN_PI) - refangle;
							 | 
						|
								
							 | 
						|
								  if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
							 | 
						|
								  {
							 | 
						|
								    VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // rotation matrix conversion
							 | 
						|
								  VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
							 | 
						|
								  VERIFY_IS_APPROX(q1 * q2 * v2,
							 | 
						|
								    q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
							 | 
						|
								
							 | 
						|
								  VERIFY(  (q2*q1).isApprox(q1*q2, largeEps)
							 | 
						|
								        || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
							 | 
						|
								
							 | 
						|
								  q2 = q1.toRotationMatrix();
							 | 
						|
								  VERIFY_IS_APPROX(q1*v1,q2*v1);
							 | 
						|
								
							 | 
						|
								  Matrix3 rot1(q1);
							 | 
						|
								  VERIFY_IS_APPROX(q1*v1,rot1*v1);
							 | 
						|
								  Quaternionx q3(rot1.transpose()*rot1);
							 | 
						|
								  VERIFY_IS_APPROX(q3*v1,v1);
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  // angle-axis conversion
							 | 
						|
								  AngleAxisx aa = AngleAxisx(q1);
							 | 
						|
								  VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
							 | 
						|
								
							 | 
						|
								  // Do not execute the test if the rotation angle is almost zero, or
							 | 
						|
								  // the rotation axis and v1 are almost parallel.
							 | 
						|
								  if (abs(aa.angle()) > 5*test_precision<Scalar>()
							 | 
						|
								      && (aa.axis() - v1.normalized()).norm() < 1.99
							 | 
						|
								      && (aa.axis() + v1.normalized()).norm() < 1.99) 
							 | 
						|
								  {
							 | 
						|
								    VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // from two vector creation
							 | 
						|
								  VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized());
							 | 
						|
								  VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized());
							 | 
						|
								  VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized());
							 | 
						|
								  if (internal::is_same<Scalar,double>::value)
							 | 
						|
								  {
							 | 
						|
								    v3 = (v1.array()+eps).matrix();
							 | 
						|
								    VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized());
							 | 
						|
								    VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized());
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // from two vector creation static function
							 | 
						|
								  VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized());
							 | 
						|
								  VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized());
							 | 
						|
								  VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized());
							 | 
						|
								  if (internal::is_same<Scalar,double>::value)
							 | 
						|
								  {
							 | 
						|
								    v3 = (v1.array()+eps).matrix();
							 | 
						|
								    VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized());
							 | 
						|
								    VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized());
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // inverse and conjugate
							 | 
						|
								  VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
							 | 
						|
								  VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
							 | 
						|
								
							 | 
						|
								  // test casting
							 | 
						|
								  Quaternion<float> q1f = q1.template cast<float>();
							 | 
						|
								  VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
							 | 
						|
								  Quaternion<double> q1d = q1.template cast<double>();
							 | 
						|
								  VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
							 | 
						|
								
							 | 
						|
								  // test bug 369 - improper alignment.
							 | 
						|
								  Quaternionx *q = new Quaternionx;
							 | 
						|
								  delete q;
							 | 
						|
								
							 | 
						|
								  q1 = AngleAxisx(a, v0.normalized());
							 | 
						|
								  q2 = AngleAxisx(b, v1.normalized());
							 | 
						|
								  check_slerp(q1,q2);
							 | 
						|
								
							 | 
						|
								  q1 = AngleAxisx(b, v1.normalized());
							 | 
						|
								  q2 = AngleAxisx(b+Scalar(STORMEIGEN_PI), v1.normalized());
							 | 
						|
								  check_slerp(q1,q2);
							 | 
						|
								
							 | 
						|
								  q1 = AngleAxisx(b,  v1.normalized());
							 | 
						|
								  q2 = AngleAxisx(-b, -v1.normalized());
							 | 
						|
								  check_slerp(q1,q2);
							 | 
						|
								
							 | 
						|
								  q1.coeffs() = Vector4::Random().normalized();
							 | 
						|
								  q2.coeffs() = -q1.coeffs();
							 | 
						|
								  check_slerp(q1,q2);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Scalar> void mapQuaternion(void){
							 | 
						|
								  typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
							 | 
						|
								  typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA;
							 | 
						|
								  typedef Map<Quaternion<Scalar> > MQuaternionUA;
							 | 
						|
								  typedef Map<const Quaternion<Scalar> > MCQuaternionUA;
							 | 
						|
								  typedef Quaternion<Scalar> Quaternionx;
							 | 
						|
								  typedef Matrix<Scalar,3,1> Vector3;
							 | 
						|
								  typedef AngleAxis<Scalar> AngleAxisx;
							 | 
						|
								  
							 | 
						|
								  Vector3 v0 = Vector3::Random(),
							 | 
						|
								          v1 = Vector3::Random();
							 | 
						|
								  Scalar  a = internal::random<Scalar>(-Scalar(STORMEIGEN_PI), Scalar(STORMEIGEN_PI));
							 | 
						|
								
							 | 
						|
								  STORMEIGEN_ALIGN_MAX Scalar array1[4];
							 | 
						|
								  STORMEIGEN_ALIGN_MAX Scalar array2[4];
							 | 
						|
								  STORMEIGEN_ALIGN_MAX Scalar array3[4+1];
							 | 
						|
								  Scalar* array3unaligned = array3+1;
							 | 
						|
								  
							 | 
						|
								  MQuaternionA    mq1(array1);
							 | 
						|
								  MCQuaternionA   mcq1(array1);
							 | 
						|
								  MQuaternionA    mq2(array2);
							 | 
						|
								  MQuaternionUA   mq3(array3unaligned);
							 | 
						|
								  MCQuaternionUA  mcq3(array3unaligned);
							 | 
						|
								
							 | 
						|
								//  std::cerr << array1 << " " << array2 << " " << array3 << "\n";
							 | 
						|
								  mq1 = AngleAxisx(a, v0.normalized());
							 | 
						|
								  mq2 = mq1;
							 | 
						|
								  mq3 = mq1;
							 | 
						|
								
							 | 
						|
								  Quaternionx q1 = mq1;
							 | 
						|
								  Quaternionx q2 = mq2;
							 | 
						|
								  Quaternionx q3 = mq3;
							 | 
						|
								  Quaternionx q4 = MCQuaternionUA(array3unaligned);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
							 | 
						|
								  VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
							 | 
						|
								  VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs());
							 | 
						|
								  #ifdef STORMEIGEN_VECTORIZE
							 | 
						|
								  if(internal::packet_traits<Scalar>::Vectorizable)
							 | 
						|
								    VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
							 | 
						|
								  #endif
							 | 
						|
								    
							 | 
						|
								  VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1);
							 | 
						|
								  VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1);
							 | 
						|
								  
							 | 
						|
								  VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1);
							 | 
						|
								  VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1);
							 | 
						|
								  
							 | 
						|
								  VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1);
							 | 
						|
								  VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1);
							 | 
						|
								  
							 | 
						|
								  VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1);
							 | 
						|
								  VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1);
							 | 
						|
								  
							 | 
						|
								  VERIFY_IS_APPROX(mq1*mq2, q1*q2);
							 | 
						|
								  VERIFY_IS_APPROX(mq3*mq2, q3*q2);
							 | 
						|
								  VERIFY_IS_APPROX(mcq1*mq2, q1*q2);
							 | 
						|
								  VERIFY_IS_APPROX(mcq3*mq2, q3*q2);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Scalar> void quaternionAlignment(void){
							 | 
						|
								  typedef Quaternion<Scalar,AutoAlign> QuaternionA;
							 | 
						|
								  typedef Quaternion<Scalar,DontAlign> QuaternionUA;
							 | 
						|
								
							 | 
						|
								  STORMEIGEN_ALIGN_MAX Scalar array1[4];
							 | 
						|
								  STORMEIGEN_ALIGN_MAX Scalar array2[4];
							 | 
						|
								  STORMEIGEN_ALIGN_MAX Scalar array3[4+1];
							 | 
						|
								  Scalar* arrayunaligned = array3+1;
							 | 
						|
								
							 | 
						|
								  QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA;
							 | 
						|
								  QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA;
							 | 
						|
								  QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA;
							 | 
						|
								
							 | 
						|
								  q1->coeffs().setRandom();
							 | 
						|
								  *q2 = *q1;
							 | 
						|
								  *q3 = *q1;
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs());
							 | 
						|
								  VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs());
							 | 
						|
								  #if defined(STORMEIGEN_VECTORIZE) && STORMEIGEN_MAX_STATIC_ALIGN_BYTES>0
							 | 
						|
								  if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4)
							 | 
						|
								    VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA));
							 | 
						|
								  #endif
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
							 | 
						|
								{
							 | 
						|
								  // there's a lot that we can't test here while still having this test compile!
							 | 
						|
								  // the only possible approach would be to run a script trying to compile stuff and checking that it fails.
							 | 
						|
								  // CMake can help with that.
							 | 
						|
								
							 | 
						|
								  // verify that map-to-const don't have LvalueBit
							 | 
						|
								  typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
							 | 
						|
								  VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
							 | 
						|
								  VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
							 | 
						|
								  VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
							 | 
						|
								  VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_geo_quaternion()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1(( quaternion<float,AutoAlign>() ));
							 | 
						|
								    CALL_SUBTEST_1( check_const_correctness(Quaternionf()) );
							 | 
						|
								    CALL_SUBTEST_2(( quaternion<double,AutoAlign>() ));
							 | 
						|
								    CALL_SUBTEST_2( check_const_correctness(Quaterniond()) );
							 | 
						|
								    CALL_SUBTEST_3(( quaternion<float,DontAlign>() ));
							 | 
						|
								    CALL_SUBTEST_4(( quaternion<double,DontAlign>() ));
							 | 
						|
								    CALL_SUBTEST_5(( quaternionAlignment<float>() ));
							 | 
						|
								    CALL_SUBTEST_6(( quaternionAlignment<double>() ));
							 | 
						|
								    CALL_SUBTEST_1( mapQuaternion<float>() );
							 | 
						|
								    CALL_SUBTEST_2( mapQuaternion<double>() );
							 | 
						|
								  }
							 | 
						|
								}
							 |