You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							168 lines
						
					
					
						
							5.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							168 lines
						
					
					
						
							5.8 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <limits>
							 | 
						|
								#include <StormEigen/Eigenvalues>
							 | 
						|
								#include <StormEigen/LU>
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> bool find_pivot(typename MatrixType::Scalar tol, MatrixType &diffs, Index col=0)
							 | 
						|
								{
							 | 
						|
								  bool match = diffs.diagonal().sum() <= tol;
							 | 
						|
								  if(match || col==diffs.cols())
							 | 
						|
								  {
							 | 
						|
								    return match;
							 | 
						|
								  }
							 | 
						|
								  else
							 | 
						|
								  {
							 | 
						|
								    Index n = diffs.cols();
							 | 
						|
								    std::vector<std::pair<Index,Index> > transpositions;
							 | 
						|
								    for(Index i=col; i<n; ++i)
							 | 
						|
								    {
							 | 
						|
								      Index best_index(0);
							 | 
						|
								      if(diffs.col(col).segment(col,n-i).minCoeff(&best_index) > tol)
							 | 
						|
								        break;
							 | 
						|
								      
							 | 
						|
								      best_index += col;
							 | 
						|
								      
							 | 
						|
								      diffs.row(col).swap(diffs.row(best_index));
							 | 
						|
								      if(find_pivot(tol,diffs,col+1)) return true;
							 | 
						|
								      diffs.row(col).swap(diffs.row(best_index));
							 | 
						|
								      
							 | 
						|
								      // move current pivot to the end
							 | 
						|
								      diffs.row(n-(i-col)-1).swap(diffs.row(best_index));
							 | 
						|
								      transpositions.push_back(std::pair<Index,Index>(n-(i-col)-1,best_index));
							 | 
						|
								    }
							 | 
						|
								    // restore
							 | 
						|
								    for(Index k=transpositions.size()-1; k>=0; --k)
							 | 
						|
								      diffs.row(transpositions[k].first).swap(diffs.row(transpositions[k].second));
							 | 
						|
								  }
							 | 
						|
								  return false;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								/* Check that two column vectors are approximately equal upto permutations.
							 | 
						|
								 * Initially, this method checked that the k-th power sums are equal for all k = 1, ..., vec1.rows(),
							 | 
						|
								 * however this strategy is numerically inacurate because of numerical cancellation issues.
							 | 
						|
								 */
							 | 
						|
								template<typename VectorType>
							 | 
						|
								void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2)
							 | 
						|
								{
							 | 
						|
								  typedef typename VectorType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								
							 | 
						|
								  VERIFY(vec1.cols() == 1);
							 | 
						|
								  VERIFY(vec2.cols() == 1);
							 | 
						|
								  VERIFY(vec1.rows() == vec2.rows());
							 | 
						|
								  
							 | 
						|
								  Index n = vec1.rows();
							 | 
						|
								  RealScalar tol = test_precision<RealScalar>()*test_precision<RealScalar>()*numext::maxi(vec1.squaredNorm(),vec2.squaredNorm());
							 | 
						|
								  Matrix<RealScalar,Dynamic,Dynamic> diffs = (vec1.rowwise().replicate(n) - vec2.rowwise().replicate(n).transpose()).cwiseAbs2();
							 | 
						|
								  
							 | 
						|
								  VERIFY( find_pivot(tol, diffs) );
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void eigensolver(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     ComplexEigenSolver.h, and indirectly ComplexSchur.h
							 | 
						|
								  */
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								
							 | 
						|
								  MatrixType a = MatrixType::Random(rows,cols);
							 | 
						|
								  MatrixType symmA =  a.adjoint() * a;
							 | 
						|
								
							 | 
						|
								  ComplexEigenSolver<MatrixType> ei0(symmA);
							 | 
						|
								  VERIFY_IS_EQUAL(ei0.info(), Success);
							 | 
						|
								  VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal());
							 | 
						|
								
							 | 
						|
								  ComplexEigenSolver<MatrixType> ei1(a);
							 | 
						|
								  VERIFY_IS_EQUAL(ei1.info(), Success);
							 | 
						|
								  VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
							 | 
						|
								  // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus
							 | 
						|
								  // another algorithm so results may differ slightly
							 | 
						|
								  verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());
							 | 
						|
								
							 | 
						|
								  ComplexEigenSolver<MatrixType> ei2;
							 | 
						|
								  ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
							 | 
						|
								  VERIFY_IS_EQUAL(ei2.info(), Success);
							 | 
						|
								  VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
							 | 
						|
								  VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
							 | 
						|
								  if (rows > 2) {
							 | 
						|
								    ei2.setMaxIterations(1).compute(a);
							 | 
						|
								    VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
							 | 
						|
								    VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  ComplexEigenSolver<MatrixType> eiNoEivecs(a, false);
							 | 
						|
								  VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
							 | 
						|
								  VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
							 | 
						|
								
							 | 
						|
								  // Regression test for issue #66
							 | 
						|
								  MatrixType z = MatrixType::Zero(rows,cols);
							 | 
						|
								  ComplexEigenSolver<MatrixType> eiz(z);
							 | 
						|
								  VERIFY((eiz.eigenvalues().cwiseEqual(0)).all());
							 | 
						|
								
							 | 
						|
								  MatrixType id = MatrixType::Identity(rows, cols);
							 | 
						|
								  VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
							 | 
						|
								
							 | 
						|
								  if (rows > 1 && rows < 20)
							 | 
						|
								  {
							 | 
						|
								    // Test matrix with NaN
							 | 
						|
								    a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
							 | 
						|
								    ComplexEigenSolver<MatrixType> eiNaN(a);
							 | 
						|
								    VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // regression test for bug 1098
							 | 
						|
								  {
							 | 
						|
								    ComplexEigenSolver<MatrixType> eig(a.adjoint() * a);
							 | 
						|
								    eig.compute(a.adjoint() * a);
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  ComplexEigenSolver<MatrixType> eig;
							 | 
						|
								  VERIFY_RAISES_ASSERT(eig.eigenvectors());
							 | 
						|
								  VERIFY_RAISES_ASSERT(eig.eigenvalues());
							 | 
						|
								
							 | 
						|
								  MatrixType a = MatrixType::Random(m.rows(),m.cols());
							 | 
						|
								  eig.compute(a, false);
							 | 
						|
								  VERIFY_RAISES_ASSERT(eig.eigenvectors());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_eigensolver_complex()
							 | 
						|
								{
							 | 
						|
								  int s = 0;
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( eigensolver(Matrix4cf()) );
							 | 
						|
								    s = internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE/4);
							 | 
						|
								    CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) );
							 | 
						|
								    CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_4( eigensolver(Matrix3f()) );
							 | 
						|
								    TEST_SET_BUT_UNUSED_VARIABLE(s)
							 | 
						|
								  }
							 | 
						|
								  CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4cf()) );
							 | 
						|
								  s = internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE/4);
							 | 
						|
								  CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXcd(s,s)) );
							 | 
						|
								  CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>()) );
							 | 
						|
								  CALL_SUBTEST_4( eigensolver_verify_assert(Matrix3f()) );
							 | 
						|
								
							 | 
						|
								  // Test problem size constructors
							 | 
						|
								  CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf> tmp(s));
							 | 
						|
								  
							 | 
						|
								  TEST_SET_BUT_UNUSED_VARIABLE(s)
							 | 
						|
								}
							 |