You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							111 lines
						
					
					
						
							4.1 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							111 lines
						
					
					
						
							4.1 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
							 | 
						|
								// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
							 | 
						|
								// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
							 | 
						|
								// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/
							 | 
						|
								
							 | 
						|
								// discard stack allocation as that too bypasses malloc
							 | 
						|
								#define STORMEIGEN_STACK_ALLOCATION_LIMIT 0
							 | 
						|
								#define STORMEIGEN_RUNTIME_NO_MALLOC
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <StormEigen/SVD>
							 | 
						|
								#include <iostream>
							 | 
						|
								#include <StormEigen/LU>
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								#define SVD_DEFAULT(M) BDCSVD<M>
							 | 
						|
								#define SVD_FOR_MIN_NORM(M) BDCSVD<M>
							 | 
						|
								#include "svd_common.h"
							 | 
						|
								
							 | 
						|
								// Check all variants of JacobiSVD
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								void bdcsvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
							 | 
						|
								{
							 | 
						|
								  MatrixType m = a;
							 | 
						|
								  if(pickrandom)
							 | 
						|
								    svd_fill_random(m);
							 | 
						|
								
							 | 
						|
								  CALL_SUBTEST(( svd_test_all_computation_options<BDCSVD<MatrixType> >(m, false)  ));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								void bdcsvd_method()
							 | 
						|
								{
							 | 
						|
								  enum { Size = MatrixType::RowsAtCompileTime };
							 | 
						|
								  typedef typename MatrixType::RealScalar RealScalar;
							 | 
						|
								  typedef Matrix<RealScalar, Size, 1> RealVecType;
							 | 
						|
								  MatrixType m = MatrixType::Identity();
							 | 
						|
								  VERIFY_IS_APPROX(m.bdcSvd().singularValues(), RealVecType::Ones());
							 | 
						|
								  VERIFY_RAISES_ASSERT(m.bdcSvd().matrixU());
							 | 
						|
								  VERIFY_RAISES_ASSERT(m.bdcSvd().matrixV());
							 | 
						|
								  VERIFY_IS_APPROX(m.bdcSvd(ComputeFullU|ComputeFullV).solve(m), m);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// compare the Singular values returned with Jacobi and Bdc
							 | 
						|
								template<typename MatrixType> 
							 | 
						|
								void compare_bdc_jacobi(const MatrixType& a = MatrixType(), unsigned int computationOptions = 0)
							 | 
						|
								{
							 | 
						|
								  MatrixType m = MatrixType::Random(a.rows(), a.cols());
							 | 
						|
								  BDCSVD<MatrixType> bdc_svd(m);
							 | 
						|
								  JacobiSVD<MatrixType> jacobi_svd(m);
							 | 
						|
								  VERIFY_IS_APPROX(bdc_svd.singularValues(), jacobi_svd.singularValues());
							 | 
						|
								  if(computationOptions & ComputeFullU) VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
							 | 
						|
								  if(computationOptions & ComputeThinU) VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
							 | 
						|
								  if(computationOptions & ComputeFullV) VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
							 | 
						|
								  if(computationOptions & ComputeThinV) VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_bdcsvd()
							 | 
						|
								{
							 | 
						|
								  CALL_SUBTEST_3(( svd_verify_assert<BDCSVD<Matrix3f>  >(Matrix3f()) ));
							 | 
						|
								  CALL_SUBTEST_4(( svd_verify_assert<BDCSVD<Matrix4d>  >(Matrix4d()) ));
							 | 
						|
								  CALL_SUBTEST_7(( svd_verify_assert<BDCSVD<MatrixXf>  >(MatrixXf(10,12)) ));
							 | 
						|
								  CALL_SUBTEST_8(( svd_verify_assert<BDCSVD<MatrixXcd> >(MatrixXcd(7,5)) ));
							 | 
						|
								  
							 | 
						|
								  CALL_SUBTEST_101(( svd_all_trivial_2x2(bdcsvd<Matrix2cd>) ));
							 | 
						|
								  CALL_SUBTEST_102(( svd_all_trivial_2x2(bdcsvd<Matrix2d>) ));
							 | 
						|
								
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_3(( bdcsvd<Matrix3f>() ));
							 | 
						|
								    CALL_SUBTEST_4(( bdcsvd<Matrix4d>() ));
							 | 
						|
								    CALL_SUBTEST_5(( bdcsvd<Matrix<float,3,5> >() ));
							 | 
						|
								
							 | 
						|
								    int r = internal::random<int>(1, STORMEIGEN_TEST_MAX_SIZE/2),
							 | 
						|
								        c = internal::random<int>(1, STORMEIGEN_TEST_MAX_SIZE/2);
							 | 
						|
								    
							 | 
						|
								    TEST_SET_BUT_UNUSED_VARIABLE(r)
							 | 
						|
								    TEST_SET_BUT_UNUSED_VARIABLE(c)
							 | 
						|
								    
							 | 
						|
								    CALL_SUBTEST_6((  bdcsvd(Matrix<double,Dynamic,2>(r,2)) ));
							 | 
						|
								    CALL_SUBTEST_7((  bdcsvd(MatrixXf(r,c)) ));
							 | 
						|
								    CALL_SUBTEST_7((  compare_bdc_jacobi(MatrixXf(r,c)) ));
							 | 
						|
								    CALL_SUBTEST_10(( bdcsvd(MatrixXd(r,c)) ));
							 | 
						|
								    CALL_SUBTEST_10(( compare_bdc_jacobi(MatrixXd(r,c)) ));
							 | 
						|
								    CALL_SUBTEST_8((  bdcsvd(MatrixXcd(r,c)) ));
							 | 
						|
								    CALL_SUBTEST_8((  compare_bdc_jacobi(MatrixXcd(r,c)) ));
							 | 
						|
								
							 | 
						|
								    // Test on inf/nan matrix
							 | 
						|
								    CALL_SUBTEST_7(  (svd_inf_nan<BDCSVD<MatrixXf>, MatrixXf>()) );
							 | 
						|
								    CALL_SUBTEST_10( (svd_inf_nan<BDCSVD<MatrixXd>, MatrixXd>()) );
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test matrixbase method
							 | 
						|
								  CALL_SUBTEST_1(( bdcsvd_method<Matrix2cd>() ));
							 | 
						|
								  CALL_SUBTEST_3(( bdcsvd_method<Matrix3f>() ));
							 | 
						|
								
							 | 
						|
								  // Test problem size constructors
							 | 
						|
								  CALL_SUBTEST_7( BDCSVD<MatrixXf>(10,10) );
							 | 
						|
								
							 | 
						|
								  // Check that preallocation avoids subsequent mallocs
							 | 
						|
								  CALL_SUBTEST_9( svd_preallocate<void>() );
							 | 
						|
								
							 | 
						|
								  CALL_SUBTEST_2( svd_underoverflow<void>() );
							 | 
						|
								}
							 | 
						|
								
							 |