You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							212 lines
						
					
					
						
							5.7 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							212 lines
						
					
					
						
							5.7 KiB
						
					
					
				
								
							 | 
						|
								// g++ -DNDEBUG -O3 -I.. benchEigenSolver.cpp  -o benchEigenSolver && ./benchEigenSolver
							 | 
						|
								// options:
							 | 
						|
								//  -DBENCH_GMM
							 | 
						|
								//  -DBENCH_GSL -lgsl /usr/lib/libcblas.so.3
							 | 
						|
								//  -DSTORMEIGEN_DONT_VECTORIZE
							 | 
						|
								//  -msse2
							 | 
						|
								//  -DREPEAT=100
							 | 
						|
								//  -DTRIES=10
							 | 
						|
								//  -DSCALAR=double
							 | 
						|
								
							 | 
						|
								#include <iostream>
							 | 
						|
								
							 | 
						|
								#include <StormEigen/Core>
							 | 
						|
								#include <StormEigen/QR>
							 | 
						|
								#include <bench/BenchUtil.h>
							 | 
						|
								using namespace StormEigen;
							 | 
						|
								
							 | 
						|
								#ifndef REPEAT
							 | 
						|
								#define REPEAT 1000
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#ifndef TRIES
							 | 
						|
								#define TRIES 4
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#ifndef SCALAR
							 | 
						|
								#define SCALAR float
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								typedef SCALAR Scalar;
							 | 
						|
								
							 | 
						|
								template <typename MatrixType>
							 | 
						|
								__attribute__ ((noinline)) void benchEigenSolver(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  int rows = m.rows();
							 | 
						|
								  int cols = m.cols();
							 | 
						|
								
							 | 
						|
								  int stdRepeats = std::max(1,int((REPEAT*1000)/(rows*rows*sqrt(rows))));
							 | 
						|
								  int saRepeats = stdRepeats * 4;
							 | 
						|
								
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
							 | 
						|
								
							 | 
						|
								  MatrixType a = MatrixType::Random(rows,cols);
							 | 
						|
								  SquareMatrixType covMat =  a * a.adjoint();
							 | 
						|
								
							 | 
						|
								  BenchTimer timerSa, timerStd;
							 | 
						|
								
							 | 
						|
								  Scalar acc = 0;
							 | 
						|
								  int r = internal::random<int>(0,covMat.rows()-1);
							 | 
						|
								  int c = internal::random<int>(0,covMat.cols()-1);
							 | 
						|
								  {
							 | 
						|
								    SelfAdjointEigenSolver<SquareMatrixType> ei(covMat);
							 | 
						|
								    for (int t=0; t<TRIES; ++t)
							 | 
						|
								    {
							 | 
						|
								      timerSa.start();
							 | 
						|
								      for (int k=0; k<saRepeats; ++k)
							 | 
						|
								      {
							 | 
						|
								        ei.compute(covMat);
							 | 
						|
								        acc += ei.eigenvectors().coeff(r,c);
							 | 
						|
								      }
							 | 
						|
								      timerSa.stop();
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  {
							 | 
						|
								    EigenSolver<SquareMatrixType> ei(covMat);
							 | 
						|
								    for (int t=0; t<TRIES; ++t)
							 | 
						|
								    {
							 | 
						|
								      timerStd.start();
							 | 
						|
								      for (int k=0; k<stdRepeats; ++k)
							 | 
						|
								      {
							 | 
						|
								        ei.compute(covMat);
							 | 
						|
								        acc += ei.eigenvectors().coeff(r,c);
							 | 
						|
								      }
							 | 
						|
								      timerStd.stop();
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  if (MatrixType::RowsAtCompileTime==Dynamic)
							 | 
						|
								    std::cout << "dyn   ";
							 | 
						|
								  else
							 | 
						|
								    std::cout << "fixed ";
							 | 
						|
								  std::cout << covMat.rows() << " \t"
							 | 
						|
								            << timerSa.value() * REPEAT / saRepeats << "s \t"
							 | 
						|
								            << timerStd.value() * REPEAT / stdRepeats << "s";
							 | 
						|
								
							 | 
						|
								  #ifdef BENCH_GMM
							 | 
						|
								  if (MatrixType::RowsAtCompileTime==Dynamic)
							 | 
						|
								  {
							 | 
						|
								    timerSa.reset();
							 | 
						|
								    timerStd.reset();
							 | 
						|
								
							 | 
						|
								    gmm::dense_matrix<Scalar> gmmCovMat(covMat.rows(),covMat.cols());
							 | 
						|
								    gmm::dense_matrix<Scalar> eigvect(covMat.rows(),covMat.cols());
							 | 
						|
								    std::vector<Scalar> eigval(covMat.rows());
							 | 
						|
								    eiToGmm(covMat, gmmCovMat);
							 | 
						|
								    for (int t=0; t<TRIES; ++t)
							 | 
						|
								    {
							 | 
						|
								      timerSa.start();
							 | 
						|
								      for (int k=0; k<saRepeats; ++k)
							 | 
						|
								      {
							 | 
						|
								        gmm::symmetric_qr_algorithm(gmmCovMat, eigval, eigvect);
							 | 
						|
								        acc += eigvect(r,c);
							 | 
						|
								      }
							 | 
						|
								      timerSa.stop();
							 | 
						|
								    }
							 | 
						|
								    // the non-selfadjoint solver does not compute the eigen vectors
							 | 
						|
								//     for (int t=0; t<TRIES; ++t)
							 | 
						|
								//     {
							 | 
						|
								//       timerStd.start();
							 | 
						|
								//       for (int k=0; k<stdRepeats; ++k)
							 | 
						|
								//       {
							 | 
						|
								//         gmm::implicit_qr_algorithm(gmmCovMat, eigval, eigvect);
							 | 
						|
								//         acc += eigvect(r,c);
							 | 
						|
								//       }
							 | 
						|
								//       timerStd.stop();
							 | 
						|
								//     }
							 | 
						|
								
							 | 
						|
								    std::cout << " | \t"
							 | 
						|
								              << timerSa.value() * REPEAT / saRepeats << "s"
							 | 
						|
								              << /*timerStd.value() * REPEAT / stdRepeats << "s"*/ "   na   ";
							 | 
						|
								  }
							 | 
						|
								  #endif
							 | 
						|
								
							 | 
						|
								  #ifdef BENCH_GSL
							 | 
						|
								  if (MatrixType::RowsAtCompileTime==Dynamic)
							 | 
						|
								  {
							 | 
						|
								    timerSa.reset();
							 | 
						|
								    timerStd.reset();
							 | 
						|
								
							 | 
						|
								    gsl_matrix* gslCovMat = gsl_matrix_alloc(covMat.rows(),covMat.cols());
							 | 
						|
								    gsl_matrix* gslCopy = gsl_matrix_alloc(covMat.rows(),covMat.cols());
							 | 
						|
								    gsl_matrix* eigvect = gsl_matrix_alloc(covMat.rows(),covMat.cols());
							 | 
						|
								    gsl_vector* eigval  = gsl_vector_alloc(covMat.rows());
							 | 
						|
								    gsl_eigen_symmv_workspace* eisymm = gsl_eigen_symmv_alloc(covMat.rows());
							 | 
						|
								    
							 | 
						|
								    gsl_matrix_complex* eigvectz = gsl_matrix_complex_alloc(covMat.rows(),covMat.cols());
							 | 
						|
								    gsl_vector_complex* eigvalz  = gsl_vector_complex_alloc(covMat.rows());
							 | 
						|
								    gsl_eigen_nonsymmv_workspace* einonsymm = gsl_eigen_nonsymmv_alloc(covMat.rows());
							 | 
						|
								    
							 | 
						|
								    eiToGsl(covMat, &gslCovMat);
							 | 
						|
								    for (int t=0; t<TRIES; ++t)
							 | 
						|
								    {
							 | 
						|
								      timerSa.start();
							 | 
						|
								      for (int k=0; k<saRepeats; ++k)
							 | 
						|
								      {
							 | 
						|
								        gsl_matrix_memcpy(gslCopy,gslCovMat);
							 | 
						|
								        gsl_eigen_symmv(gslCopy, eigval, eigvect, eisymm);
							 | 
						|
								        acc += gsl_matrix_get(eigvect,r,c);
							 | 
						|
								      }
							 | 
						|
								      timerSa.stop();
							 | 
						|
								    }
							 | 
						|
								    for (int t=0; t<TRIES; ++t)
							 | 
						|
								    {
							 | 
						|
								      timerStd.start();
							 | 
						|
								      for (int k=0; k<stdRepeats; ++k)
							 | 
						|
								      {
							 | 
						|
								        gsl_matrix_memcpy(gslCopy,gslCovMat);
							 | 
						|
								        gsl_eigen_nonsymmv(gslCopy, eigvalz, eigvectz, einonsymm);
							 | 
						|
								        acc += GSL_REAL(gsl_matrix_complex_get(eigvectz,r,c));
							 | 
						|
								      }
							 | 
						|
								      timerStd.stop();
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    std::cout << " | \t"
							 | 
						|
								              << timerSa.value() * REPEAT / saRepeats << "s \t"
							 | 
						|
								              << timerStd.value() * REPEAT / stdRepeats << "s";
							 | 
						|
								
							 | 
						|
								    gsl_matrix_free(gslCovMat);
							 | 
						|
								    gsl_vector_free(gslCopy);
							 | 
						|
								    gsl_matrix_free(eigvect);
							 | 
						|
								    gsl_vector_free(eigval);
							 | 
						|
								    gsl_matrix_complex_free(eigvectz);
							 | 
						|
								    gsl_vector_complex_free(eigvalz);
							 | 
						|
								    gsl_eigen_symmv_free(eisymm);
							 | 
						|
								    gsl_eigen_nonsymmv_free(einonsymm);
							 | 
						|
								  }
							 | 
						|
								  #endif
							 | 
						|
								
							 | 
						|
								  std::cout << "\n";
							 | 
						|
								  
							 | 
						|
								  // make sure the compiler does not optimize too much
							 | 
						|
								  if (acc==123)
							 | 
						|
								    std::cout << acc;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								int main(int argc, char* argv[])
							 | 
						|
								{
							 | 
						|
								  const int dynsizes[] = {4,6,8,12,16,24,32,64,128,256,512,0};
							 | 
						|
								  std::cout << "size            selfadjoint       generic";
							 | 
						|
								  #ifdef BENCH_GMM
							 | 
						|
								  std::cout << "        GMM++          ";
							 | 
						|
								  #endif
							 | 
						|
								  #ifdef BENCH_GSL
							 | 
						|
								  std::cout << "       GSL (double + ATLAS)  ";
							 | 
						|
								  #endif
							 | 
						|
								  std::cout << "\n";
							 | 
						|
								  for (uint i=0; dynsizes[i]>0; ++i)
							 | 
						|
								    benchEigenSolver(Matrix<Scalar,Dynamic,Dynamic>(dynsizes[i],dynsizes[i]));
							 | 
						|
								
							 | 
						|
								  benchEigenSolver(Matrix<Scalar,2,2>());
							 | 
						|
								  benchEigenSolver(Matrix<Scalar,3,3>());
							 | 
						|
								  benchEigenSolver(Matrix<Scalar,4,4>());
							 | 
						|
								  benchEigenSolver(Matrix<Scalar,6,6>());
							 | 
						|
								  benchEigenSolver(Matrix<Scalar,8,8>());
							 | 
						|
								  benchEigenSolver(Matrix<Scalar,12,12>());
							 | 
						|
								  benchEigenSolver(Matrix<Scalar,16,16>());
							 | 
						|
								  return 0;
							 | 
						|
								}
							 | 
						|
								
							 |