You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							284 lines
						
					
					
						
							9.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							284 lines
						
					
					
						
							9.8 KiB
						
					
					
				| /* -*- c++ -*- (enables emacs c++ mode) */ | |
| /*=========================================================================== | |
|   | |
|  Copyright (C) 2004-2012 Yves Renard | |
|   | |
|  This file is a part of GETFEM++ | |
|   | |
|  Getfem++  is  free software;  you  can  redistribute  it  and/or modify it | |
|  under  the  terms  of the  GNU  Lesser General Public License as published | |
|  by  the  Free Software Foundation;  either version 3 of the License,  or | |
|  (at your option) any later version along with the GCC Runtime Library | |
|  Exception either version 3.1 or (at your option) any later version. | |
|  This program  is  distributed  in  the  hope  that it will be useful,  but | |
|  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
|  or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public | |
|  License and GCC Runtime Library Exception for more details. | |
|  You  should  have received a copy of the GNU Lesser General Public License | |
|  along  with  this program;  if not, write to the Free Software Foundation, | |
|  Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA. | |
|   | |
|  As a special exception, you  may use  this file  as it is a part of a free | |
|  software  library  without  restriction.  Specifically,  if   other  files | |
|  instantiate  templates  or  use macros or inline functions from this file, | |
|  or  you compile this  file  and  link  it  with other files  to produce an | |
|  executable, this file  does  not  by itself cause the resulting executable | |
|  to be covered  by the GNU Lesser General Public License.  This   exception | |
|  does not  however  invalidate  any  other  reasons why the executable file | |
|  might be covered by the GNU Lesser General Public License. | |
|   | |
| ===========================================================================*/ | |
| 
 | |
| /**@file gmm_precond_ilutp.h | |
|    @author  Yves Renard <Yves.Renard@insa-lyon.fr> | |
|    @date October 14, 2004. | |
|    @brief ILUTP: Incomplete LU with threshold and K fill-in Preconditioner and | |
|    column pivoting. | |
|  | |
|     | |
| */ | |
| #ifndef GMM_PRECOND_ILUTP_H | |
| #define GMM_PRECOND_ILUTP_H | |
|  | |
| #include "gmm_precond_ilut.h" | |
|  | |
| namespace gmm { | |
| 
 | |
|   /** | |
|      ILUTP: Incomplete LU with threshold and K fill-in Preconditioner and | |
|      column pivoting. | |
|     | |
|      See Yousef Saad, Iterative Methods for | |
|      sparse linear systems, PWS Publishing Company, section 10.4.4 | |
|  | |
|       TODO : store the permutation by cycles to avoid the temporary vector | |
|   */ | |
|   template <typename Matrix> | |
|   class ilutp_precond  { | |
|   public : | |
|     typedef typename linalg_traits<Matrix>::value_type value_type; | |
|     typedef wsvector<value_type> _wsvector; | |
|     typedef rsvector<value_type> _rsvector; | |
|     typedef row_matrix<_rsvector> LU_Matrix; | |
|     typedef col_matrix<_wsvector> CLU_Matrix; | |
| 
 | |
|     bool invert; | |
|     LU_Matrix L, U; | |
|     gmm::unsorted_sub_index indperm; | |
|     gmm::unsorted_sub_index indperminv; | |
|     mutable std::vector<value_type> temporary; | |
| 
 | |
|   protected: | |
|     size_type K; | |
|     double eps; | |
| 
 | |
|     template<typename M> void do_ilutp(const M&, row_major); | |
|     void do_ilutp(const Matrix&, col_major); | |
| 
 | |
|   public: | |
|     void build_with(const Matrix& A, int k_ = -1, double eps_ = double(-1)) { | |
|       if (k_ >= 0) K = k_; | |
|       if (eps_ >= double(0)) eps = eps_; | |
|       invert = false; | |
|       gmm::resize(L, mat_nrows(A), mat_ncols(A)); | |
|       gmm::resize(U, mat_nrows(A), mat_ncols(A)); | |
|       do_ilutp(A, typename principal_orientation_type<typename | |
| 	      linalg_traits<Matrix>::sub_orientation>::potype()); | |
|     } | |
|     ilutp_precond(const Matrix& A, size_type k_, double eps_)  | |
|       : L(mat_nrows(A), mat_ncols(A)), U(mat_nrows(A), mat_ncols(A)), | |
| 	K(k_), eps(eps_) { build_with(A); } | |
|     ilutp_precond(int k_, double eps_) :  K(k_), eps(eps_) {} | |
|     ilutp_precond(void) { K = 10; eps = 1E-7; } | |
|     size_type memsize() const {  | |
|       return sizeof(*this) + (nnz(U)+nnz(L))*sizeof(value_type); | |
|     } | |
|   }; | |
| 
 | |
| 
 | |
|   template<typename Matrix> template<typename M>  | |
|   void ilutp_precond<Matrix>::do_ilutp(const M& A, row_major) { | |
|     typedef value_type T; | |
|     typedef typename number_traits<T>::magnitude_type R; | |
| 
 | |
|     size_type n = mat_nrows(A); | |
|     CLU_Matrix CU(n,n); | |
|     if (n == 0) return; | |
|     std::vector<T> indiag(n); | |
|     temporary.resize(n); | |
|     std::vector<size_type> ipvt(n), ipvtinv(n); | |
|     for (size_type i = 0; i < n; ++i) ipvt[i] = ipvtinv[i] = i; | |
|     indperm = unsorted_sub_index(ipvt); | |
|     indperminv = unsorted_sub_index(ipvtinv); | |
|     _wsvector w(mat_ncols(A)); | |
|     _rsvector ww(mat_ncols(A)); | |
|      | |
|     T tmp = T(0); | |
|     gmm::clear(L); gmm::clear(U); | |
|     R prec = default_tol(R());  | |
|     R max_pivot = gmm::abs(A(0,0)) * prec; | |
| 
 | |
|     for (size_type i = 0; i < n; ++i) { | |
| 
 | |
|       copy(sub_vector(mat_const_row(A, i), indperm), w); | |
|       double norm_row = gmm::vect_norm2(mat_const_row(A, i));  | |
| 
 | |
|       typename _wsvector::iterator wkold = w.end(); | |
|       for (typename _wsvector::iterator wk = w.begin(); | |
| 	   wk != w.end() && wk->first < i; )  { | |
| 	size_type k = wk->first; | |
| 	tmp = (wk->second) * indiag[k]; | |
| 	if (gmm::abs(tmp) < eps * norm_row) w.erase(k);  | |
| 	else { wk->second += tmp; gmm::add(scaled(mat_row(U, k), -tmp), w); } | |
| 	if (wkold == w.end()) wk = w.begin(); else { wk = wkold; ++wk; } | |
| 	if (wk != w.end() && wk->first == k) | |
| 	  { if (wkold == w.end()) wkold = w.begin(); else ++wkold; ++wk; } | |
|       } | |
| 
 | |
|       gmm::clean(w, eps * norm_row); | |
|       gmm::copy(w, ww); | |
| 
 | |
|       std::sort(ww.begin(), ww.end(), elt_rsvector_value_less_<T>()); | |
|       typename _rsvector::const_iterator wit = ww.begin(), wite = ww.end(); | |
|       size_type ip = size_type(-1); | |
| 
 | |
|       for (; wit != wite; ++wit) | |
| 	if (wit->c >= i) { ip = wit->c; tmp = wit->e; break; } | |
|       if (ip == size_type(-1) || gmm::abs(tmp) <= max_pivot) | |
| 	{ GMM_WARNING2("pivot " << i << " too small"); ip=i; ww[i]=tmp=T(1); } | |
|       max_pivot = std::max(max_pivot, std::min(gmm::abs(tmp) * prec, R(1))); | |
|       indiag[i] = T(1) / tmp; | |
|       wit = ww.begin(); | |
| 
 | |
|       size_type nnl = 0, nnu = 0; | |
|       L[i].base_resize(K); U[i].base_resize(K+1); | |
|       typename _rsvector::iterator witL = L[i].begin(), witU = U[i].begin(); | |
|       for (; wit != wite; ++wit) { | |
| 	if (wit->c < i) { if (nnl < K) { *witL++ = *wit; ++nnl; } } | |
| 	else if (nnu < K || wit->c == i) | |
| 	  { CU(i, wit->c) = wit->e; *witU++ = *wit; ++nnu; } | |
|       } | |
|       L[i].base_resize(nnl); U[i].base_resize(nnu); | |
|       std::sort(L[i].begin(), L[i].end()); | |
|       std::sort(U[i].begin(), U[i].end()); | |
| 
 | |
|       if (ip != i) { | |
| 	typename _wsvector::const_iterator iti = CU.col(i).begin(); | |
| 	typename _wsvector::const_iterator itie = CU.col(i).end(); | |
| 	typename _wsvector::const_iterator itp = CU.col(ip).begin(); | |
| 	typename _wsvector::const_iterator itpe = CU.col(ip).end(); | |
| 	 | |
| 	while (iti != itie && itp != itpe) { | |
| 	  if (iti->first < itp->first) | |
| 	    { U.row(iti->first).swap_indices(i, ip); ++iti; } | |
| 	  else if (iti->first > itp->first) | |
| 	    { U.row(itp->first).swap_indices(i,ip);++itp; } | |
| 	  else | |
| 	    { U.row(iti->first).swap_indices(i, ip); ++iti; ++itp; } | |
| 	} | |
| 	 | |
| 	for( ; iti != itie; ++iti) U.row(iti->first).swap_indices(i, ip); | |
| 	for( ; itp != itpe; ++itp) U.row(itp->first).swap_indices(i, ip); | |
| 
 | |
| 	CU.swap_col(i, ip); | |
| 	 | |
| 	indperm.swap(i, ip); | |
| 	indperminv.swap(ipvt[i], ipvt[ip]); | |
| 	std::swap(ipvtinv[ipvt[i]], ipvtinv[ipvt[ip]]); | |
| 	std::swap(ipvt[i], ipvt[ip]); | |
|       } | |
|     } | |
|   } | |
| 
 | |
|   template<typename Matrix>  | |
|   void ilutp_precond<Matrix>::do_ilutp(const Matrix& A, col_major) { | |
|     do_ilutp(gmm::transposed(A), row_major()); | |
|     invert = true; | |
|   } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void mult(const ilutp_precond<Matrix>& P, const V1 &v1, V2 &v2) { | |
|     if (P.invert) { | |
|       gmm::copy(gmm::sub_vector(v1, P.indperm), v2); | |
|       gmm::lower_tri_solve(gmm::transposed(P.U), v2, false); | |
|       gmm::upper_tri_solve(gmm::transposed(P.L), v2, true); | |
|     } | |
|     else { | |
|       gmm::copy(v1, P.temporary); | |
|       gmm::lower_tri_solve(P.L, P.temporary, true); | |
|       gmm::upper_tri_solve(P.U, P.temporary, false); | |
|       gmm::copy(gmm::sub_vector(P.temporary, P.indperminv), v2); | |
|     } | |
|   } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void transposed_mult(const ilutp_precond<Matrix>& P,const V1 &v1,V2 &v2) { | |
|     if (P.invert) { | |
|       gmm::copy(v1, P.temporary); | |
|       gmm::lower_tri_solve(P.L, P.temporary, true); | |
|       gmm::upper_tri_solve(P.U, P.temporary, false); | |
|       gmm::copy(gmm::sub_vector(P.temporary, P.indperminv), v2); | |
|     } | |
|     else { | |
|       gmm::copy(gmm::sub_vector(v1, P.indperm), v2); | |
|       gmm::lower_tri_solve(gmm::transposed(P.U), v2, false); | |
|       gmm::upper_tri_solve(gmm::transposed(P.L), v2, true); | |
|     } | |
|   } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void left_mult(const ilutp_precond<Matrix>& P, const V1 &v1, V2 &v2) { | |
|     if (P.invert) { | |
|       gmm::copy(gmm::sub_vector(v1, P.indperm), v2); | |
|       gmm::lower_tri_solve(gmm::transposed(P.U), v2, false); | |
|     } | |
|     else { | |
|       copy(v1, v2); | |
|       gmm::lower_tri_solve(P.L, v2, true); | |
|     } | |
|   } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void right_mult(const ilutp_precond<Matrix>& P, const V1 &v1, V2 &v2) { | |
|     if (P.invert) { | |
|       copy(v1, v2); | |
|       gmm::upper_tri_solve(gmm::transposed(P.L), v2, true); | |
|     } | |
|     else { | |
|       copy(v1, P.temporary); | |
|       gmm::upper_tri_solve(P.U, P.temporary, false); | |
|       gmm::copy(gmm::sub_vector(P.temporary, P.indperminv), v2); | |
|     } | |
|   } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void transposed_left_mult(const ilutp_precond<Matrix>& P, const V1 &v1, | |
| 			    V2 &v2) { | |
|     if (P.invert) { | |
|       copy(v1, P.temporary); | |
|       gmm::upper_tri_solve(P.U, P.temporary, false); | |
|       gmm::copy(gmm::sub_vector(P.temporary, P.indperminv), v2); | |
|     } | |
|     else { | |
|       copy(v1, v2); | |
|       gmm::upper_tri_solve(gmm::transposed(P.L), v2, true); | |
|     } | |
|   } | |
|    | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void transposed_right_mult(const ilutp_precond<Matrix>& P, const V1 &v1, | |
| 			     V2 &v2) { | |
|     if (P.invert) { | |
|       copy(v1, v2); | |
|       gmm::lower_tri_solve(P.L, v2, true); | |
|     } | |
|     else { | |
|       gmm::copy(gmm::sub_vector(v1, P.indperm), v2); | |
|       gmm::lower_tri_solve(gmm::transposed(P.U), v2, false); | |
|     } | |
|   } | |
| 
 | |
| } | |
| 
 | |
| #endif  | |
| 
 |