You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							200 lines
						
					
					
						
							7.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							200 lines
						
					
					
						
							7.0 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. Eigen itself is part of the KDE project. | |
| // | |
| // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "sparse.h" | |
|  | |
| template<typename Scalar> void | |
| initSPD(double density, | |
|         Matrix<Scalar,Dynamic,Dynamic>& refMat, | |
|         SparseMatrix<Scalar>& sparseMat) | |
| { | |
|   Matrix<Scalar,Dynamic,Dynamic> aux(refMat.rows(),refMat.cols()); | |
|   initSparse(density,refMat,sparseMat); | |
|   refMat = refMat * refMat.adjoint(); | |
|   for (int k=0; k<2; ++k) | |
|   { | |
|     initSparse(density,aux,sparseMat,ForceNonZeroDiag); | |
|     refMat += aux * aux.adjoint(); | |
|   } | |
|   sparseMat.startFill(); | |
|   for (int j=0 ; j<sparseMat.cols(); ++j) | |
|     for (int i=j ; i<sparseMat.rows(); ++i) | |
|       if (refMat(i,j)!=Scalar(0)) | |
|         sparseMat.fill(i,j) = refMat(i,j); | |
|   sparseMat.endFill(); | |
| } | |
| 
 | |
| template<typename Scalar> void sparse_solvers(int rows, int cols) | |
| { | |
|   double density = std::max(8./(rows*cols), 0.01); | |
|   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | |
|   typedef Matrix<Scalar,Dynamic,1> DenseVector; | |
|   // Scalar eps = 1e-6; | |
|  | |
|   DenseVector vec1 = DenseVector::Random(rows); | |
| 
 | |
|   std::vector<Vector2i> zeroCoords; | |
|   std::vector<Vector2i> nonzeroCoords; | |
| 
 | |
|   // test triangular solver | |
|   { | |
|     DenseVector vec2 = vec1, vec3 = vec1; | |
|     SparseMatrix<Scalar> m2(rows, cols); | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); | |
| 
 | |
|     // lower | |
|     initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords); | |
|     VERIFY_IS_APPROX(refMat2.template marked<LowerTriangular>().solveTriangular(vec2), | |
|                      m2.template marked<LowerTriangular>().solveTriangular(vec3)); | |
| 
 | |
|     // lower - transpose | |
|     initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords); | |
|     VERIFY_IS_APPROX(refMat2.template marked<LowerTriangular>().transpose().solveTriangular(vec2), | |
|                      m2.template marked<LowerTriangular>().transpose().solveTriangular(vec3)); | |
| 
 | |
|     // upper | |
|     initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords); | |
|     VERIFY_IS_APPROX(refMat2.template marked<UpperTriangular>().solveTriangular(vec2), | |
|                      m2.template marked<UpperTriangular>().solveTriangular(vec3)); | |
| 
 | |
|     // upper - transpose | |
|     initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords); | |
|     VERIFY_IS_APPROX(refMat2.template marked<UpperTriangular>().transpose().solveTriangular(vec2), | |
|                      m2.template marked<UpperTriangular>().transpose().solveTriangular(vec3)); | |
|   } | |
| 
 | |
|   // test LLT | |
|   { | |
|     // TODO fix the issue with complex (see SparseLLT::solveInPlace) | |
|     SparseMatrix<Scalar> m2(rows, cols); | |
|     DenseMatrix refMat2(rows, cols); | |
| 
 | |
|     DenseVector b = DenseVector::Random(cols); | |
|     DenseVector refX(cols), x(cols); | |
| 
 | |
|     initSPD(density, refMat2, m2); | |
| 
 | |
|     refMat2.llt().solve(b, &refX); | |
|     typedef SparseMatrix<Scalar,LowerTriangular|SelfAdjoint> SparseSelfAdjointMatrix; | |
|     if (!NumTraits<Scalar>::IsComplex) | |
|     { | |
|       x = b; | |
|       SparseLLT<SparseSelfAdjointMatrix> (m2).solveInPlace(x); | |
|       VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default"); | |
|     } | |
|     #ifdef EIGEN_CHOLMOD_SUPPORT | |
|     x = b; | |
|     SparseLLT<SparseSelfAdjointMatrix,Cholmod>(m2).solveInPlace(x); | |
|     VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod"); | |
|     #endif | |
|     if (!NumTraits<Scalar>::IsComplex) | |
|     { | |
|       #ifdef EIGEN_TAUCS_SUPPORT | |
|       x = b; | |
|       SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,IncompleteFactorization).solveInPlace(x); | |
|       VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)"); | |
|       x = b; | |
|       SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x); | |
|       VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)"); | |
|       x = b; | |
|       SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x); | |
|       VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)"); | |
|       #endif | |
|     } | |
|   } | |
| 
 | |
|   // test LDLT | |
|   if (!NumTraits<Scalar>::IsComplex) | |
|   { | |
|     // TODO fix the issue with complex (see SparseLDLT::solveInPlace) | |
|     SparseMatrix<Scalar> m2(rows, cols); | |
|     DenseMatrix refMat2(rows, cols); | |
| 
 | |
|     DenseVector b = DenseVector::Random(cols); | |
|     DenseVector refX(cols), x(cols); | |
| 
 | |
|     //initSPD(density, refMat2, m2); | |
|     initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0); | |
|     refMat2 += refMat2.adjoint(); | |
|     refMat2.diagonal() *= 0.5; | |
| 
 | |
|     refMat2.ldlt().solve(b, &refX); | |
|     typedef SparseMatrix<Scalar,UpperTriangular|SelfAdjoint> SparseSelfAdjointMatrix; | |
|     x = b; | |
|     SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2); | |
|     if (ldlt.succeeded()) | |
|       ldlt.solveInPlace(x); | |
|     VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default"); | |
|   } | |
| 
 | |
|   // test LU | |
|   { | |
|     static int count = 0; | |
|     SparseMatrix<Scalar> m2(rows, cols); | |
|     DenseMatrix refMat2(rows, cols); | |
| 
 | |
|     DenseVector b = DenseVector::Random(cols); | |
|     DenseVector refX(cols), x(cols); | |
| 
 | |
|     initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords); | |
| 
 | |
|     LU<DenseMatrix> refLu(refMat2); | |
|     refLu.solve(b, &refX); | |
|     #if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT) | |
|     Scalar refDet = refLu.determinant(); | |
|     #endif | |
|     x.setZero(); | |
|     // // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x); | |
|     // // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default"); | |
|     #ifdef EIGEN_SUPERLU_SUPPORT | |
|     { | |
|       x.setZero(); | |
|       SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2); | |
|       if (slu.succeeded()) | |
|       { | |
|         if (slu.solve(b,&x)) { | |
|           VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU"); | |
|         } | |
|         // std::cerr << refDet << " == " << slu.determinant() << "\n"; | |
|         if (count==0) { | |
|           VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex | |
|         } | |
|       } | |
|     } | |
|     #endif | |
|     #ifdef EIGEN_UMFPACK_SUPPORT | |
|     { | |
|       // check solve | |
|       x.setZero(); | |
|       SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2); | |
|       if (slu.succeeded()) { | |
|         if (slu.solve(b,&x)) { | |
|           if (count==0) { | |
|             VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack");  // FIXME solve is not very stable for complex | |
|           } | |
|         } | |
|         VERIFY_IS_APPROX(refDet,slu.determinant()); | |
|         // TODO check the extracted data | |
|         //std::cerr << slu.matrixL() << "\n"; | |
|       } | |
|     } | |
|     #endif | |
|     count++; | |
|   } | |
| 
 | |
| } | |
| 
 | |
| void test_eigen2_sparse_solvers() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( sparse_solvers<double>(8, 8) ); | |
|     CALL_SUBTEST_2( sparse_solvers<std::complex<double> >(16, 16) ); | |
|     CALL_SUBTEST_1( sparse_solvers<double>(101, 101) ); | |
|   } | |
| }
 |