You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							262 lines
						
					
					
						
							8.9 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							262 lines
						
					
					
						
							8.9 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2009 Mark Borgerding mark a borgerding net
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <unsupported/StormEigen/FFT>
							 | 
						|
								
							 | 
						|
								template <typename T> 
							 | 
						|
								std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); }
							 | 
						|
								
							 | 
						|
								using namespace std;
							 | 
						|
								using namespace StormEigen;
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								template < typename T>
							 | 
						|
								complex<long double>  promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
							 | 
						|
								
							 | 
						|
								complex<long double>  promote(float x) { return complex<long double>( x); }
							 | 
						|
								complex<long double>  promote(double x) { return complex<long double>( x); }
							 | 
						|
								complex<long double>  promote(long double x) { return complex<long double>( x); }
							 | 
						|
								    
							 | 
						|
								
							 | 
						|
								    template <typename VT1,typename VT2>
							 | 
						|
								    long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf)
							 | 
						|
								    {
							 | 
						|
								        long double totalpower=0;
							 | 
						|
								        long double difpower=0;
							 | 
						|
								        long double pi = acos((long double)-1 );
							 | 
						|
								        for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) {
							 | 
						|
								            complex<long double> acc = 0;
							 | 
						|
								            long double phinc = -2.*k0* pi / timebuf.size();
							 | 
						|
								            for (size_t k1=0;k1<(size_t)timebuf.size();++k1) {
							 | 
						|
								                acc +=  promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
							 | 
						|
								            }
							 | 
						|
								            totalpower += numext::abs2(acc);
							 | 
						|
								            complex<long double> x = promote(fftbuf[k0]); 
							 | 
						|
								            complex<long double> dif = acc - x;
							 | 
						|
								            difpower += numext::abs2(dif);
							 | 
						|
								            //cerr << k0 << "\t" << acc << "\t" <<  x << "\t" << sqrt(numext::abs2(dif)) << endl;
							 | 
						|
								        }
							 | 
						|
								        cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
							 | 
						|
								        return sqrt(difpower/totalpower);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    template <typename VT1,typename VT2>
							 | 
						|
								    long double dif_rmse( const VT1 buf1,const VT2 buf2)
							 | 
						|
								    {
							 | 
						|
								        long double totalpower=0;
							 | 
						|
								        long double difpower=0;
							 | 
						|
								        size_t n = (min)( buf1.size(),buf2.size() );
							 | 
						|
								        for (size_t k=0;k<n;++k) {
							 | 
						|
								            totalpower += (numext::abs2( buf1[k] ) + numext::abs2(buf2[k]) )/2.;
							 | 
						|
								            difpower += numext::abs2(buf1[k] - buf2[k]);
							 | 
						|
								        }
							 | 
						|
								        return sqrt(difpower/totalpower);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								enum { StdVectorContainer, EigenVectorContainer };
							 | 
						|
								
							 | 
						|
								template<int Container, typename Scalar> struct VectorType;
							 | 
						|
								
							 | 
						|
								template<typename Scalar> struct VectorType<StdVectorContainer,Scalar>
							 | 
						|
								{
							 | 
						|
								  typedef vector<Scalar> type;
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar>
							 | 
						|
								{
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> type;
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								template <int Container, typename T>
							 | 
						|
								void test_scalar_generic(int nfft)
							 | 
						|
								{
							 | 
						|
								    typedef typename FFT<T>::Complex Complex;
							 | 
						|
								    typedef typename FFT<T>::Scalar Scalar;
							 | 
						|
								    typedef typename VectorType<Container,Scalar>::type ScalarVector;
							 | 
						|
								    typedef typename VectorType<Container,Complex>::type ComplexVector;
							 | 
						|
								
							 | 
						|
								    FFT<T> fft;
							 | 
						|
								    ScalarVector tbuf(nfft);
							 | 
						|
								    ComplexVector freqBuf;
							 | 
						|
								    for (int k=0;k<nfft;++k)
							 | 
						|
								        tbuf[k]= (T)( rand()/(double)RAND_MAX - .5);
							 | 
						|
								
							 | 
						|
								    // make sure it DOESN'T give the right full spectrum answer
							 | 
						|
								    // if we've asked for half-spectrum
							 | 
						|
								    fft.SetFlag(fft.HalfSpectrum );
							 | 
						|
								    fft.fwd( freqBuf,tbuf);
							 | 
						|
								    VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) );
							 | 
						|
								    VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>()  );// gross check
							 | 
						|
								
							 | 
						|
								    fft.ClearFlag(fft.HalfSpectrum );
							 | 
						|
								    fft.fwd( freqBuf,tbuf);
							 | 
						|
								    VERIFY( (size_t)freqBuf.size() == (size_t)nfft);
							 | 
						|
								    VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>()  );// gross check
							 | 
						|
								
							 | 
						|
								    if (nfft&1)
							 | 
						|
								        return; // odd FFTs get the wrong size inverse FFT
							 | 
						|
								
							 | 
						|
								    ScalarVector tbuf2;
							 | 
						|
								    fft.inv( tbuf2 , freqBuf);
							 | 
						|
								    VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>()  );// gross check
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								    // verify that the Unscaled flag takes effect
							 | 
						|
								    ScalarVector tbuf3;
							 | 
						|
								    fft.SetFlag(fft.Unscaled);
							 | 
						|
								
							 | 
						|
								    fft.inv( tbuf3 , freqBuf);
							 | 
						|
								
							 | 
						|
								    for (int k=0;k<nfft;++k)
							 | 
						|
								        tbuf3[k] *= T(1./nfft);
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								    //for (size_t i=0;i<(size_t) tbuf.size();++i)
							 | 
						|
								    //    cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " -  in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) <<  endl;
							 | 
						|
								
							 | 
						|
								    VERIFY( dif_rmse(tbuf,tbuf3) < test_precision<T>()  );// gross check
							 | 
						|
								
							 | 
						|
								    // verify that ClearFlag works
							 | 
						|
								    fft.ClearFlag(fft.Unscaled);
							 | 
						|
								    fft.inv( tbuf2 , freqBuf);
							 | 
						|
								    VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>()  );// gross check
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template <typename T>
							 | 
						|
								void test_scalar(int nfft)
							 | 
						|
								{
							 | 
						|
								  test_scalar_generic<StdVectorContainer,T>(nfft);
							 | 
						|
								  //test_scalar_generic<EigenVectorContainer,T>(nfft);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								template <int Container, typename T>
							 | 
						|
								void test_complex_generic(int nfft)
							 | 
						|
								{
							 | 
						|
								    typedef typename FFT<T>::Complex Complex;
							 | 
						|
								    typedef typename VectorType<Container,Complex>::type ComplexVector;
							 | 
						|
								
							 | 
						|
								    FFT<T> fft;
							 | 
						|
								
							 | 
						|
								    ComplexVector inbuf(nfft);
							 | 
						|
								    ComplexVector outbuf;
							 | 
						|
								    ComplexVector buf3;
							 | 
						|
								    for (int k=0;k<nfft;++k)
							 | 
						|
								        inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
							 | 
						|
								    fft.fwd( outbuf , inbuf);
							 | 
						|
								
							 | 
						|
								    VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>()  );// gross check
							 | 
						|
								    fft.inv( buf3 , outbuf);
							 | 
						|
								
							 | 
						|
								    VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>()  );// gross check
							 | 
						|
								
							 | 
						|
								    // verify that the Unscaled flag takes effect
							 | 
						|
								    ComplexVector buf4;
							 | 
						|
								    fft.SetFlag(fft.Unscaled);
							 | 
						|
								    fft.inv( buf4 , outbuf);
							 | 
						|
								    for (int k=0;k<nfft;++k)
							 | 
						|
								        buf4[k] *= T(1./nfft);
							 | 
						|
								    VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>()  );// gross check
							 | 
						|
								
							 | 
						|
								    // verify that ClearFlag works
							 | 
						|
								    fft.ClearFlag(fft.Unscaled);
							 | 
						|
								    fft.inv( buf3 , outbuf);
							 | 
						|
								    VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>()  );// gross check
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template <typename T>
							 | 
						|
								void test_complex(int nfft)
							 | 
						|
								{
							 | 
						|
								  test_complex_generic<StdVectorContainer,T>(nfft);
							 | 
						|
								  test_complex_generic<EigenVectorContainer,T>(nfft);
							 | 
						|
								}
							 | 
						|
								/*
							 | 
						|
								template <typename T,int nrows,int ncols>
							 | 
						|
								void test_complex2d()
							 | 
						|
								{
							 | 
						|
								    typedef typename StormEigen::FFT<T>::Complex Complex;
							 | 
						|
								    FFT<T> fft;
							 | 
						|
								    StormEigen::Matrix<Complex,nrows,ncols> src,src2,dst,dst2;
							 | 
						|
								
							 | 
						|
								    src = StormEigen::Matrix<Complex,nrows,ncols>::Random();
							 | 
						|
								    //src =  StormEigen::Matrix<Complex,nrows,ncols>::Identity();
							 | 
						|
								
							 | 
						|
								    for (int k=0;k<ncols;k++) {
							 | 
						|
								        StormEigen::Matrix<Complex,nrows,1> tmpOut;
							 | 
						|
								        fft.fwd( tmpOut,src.col(k) );
							 | 
						|
								        dst2.col(k) = tmpOut;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    for (int k=0;k<nrows;k++) {
							 | 
						|
								        StormEigen::Matrix<Complex,1,ncols> tmpOut;
							 | 
						|
								        fft.fwd( tmpOut,  dst2.row(k) );
							 | 
						|
								        dst2.row(k) = tmpOut;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    fft.fwd2(dst.data(),src.data(),ncols,nrows);
							 | 
						|
								    fft.inv2(src2.data(),dst.data(),ncols,nrows);
							 | 
						|
								    VERIFY( (src-src2).norm() < test_precision<T>() );
							 | 
						|
								    VERIFY( (dst-dst2).norm() < test_precision<T>() );
							 | 
						|
								}
							 | 
						|
								*/
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								void test_return_by_value(int len)
							 | 
						|
								{
							 | 
						|
								    VectorXf in;
							 | 
						|
								    VectorXf in1;
							 | 
						|
								    in.setRandom( len );
							 | 
						|
								    VectorXcf out1,out2;
							 | 
						|
								    FFT<float> fft;
							 | 
						|
								
							 | 
						|
								    fft.SetFlag(fft.HalfSpectrum );
							 | 
						|
								
							 | 
						|
								    fft.fwd(out1,in);
							 | 
						|
								    out2 = fft.fwd(in);
							 | 
						|
								    VERIFY( (out1-out2).norm() < test_precision<float>() );
							 | 
						|
								    in1 = fft.inv(out1);
							 | 
						|
								    VERIFY( (in1-in).norm() < test_precision<float>() );
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_FFTW()
							 | 
						|
								{
							 | 
						|
								  CALL_SUBTEST( test_return_by_value(32) );
							 | 
						|
								  //CALL_SUBTEST( ( test_complex2d<float,4,8> () ) ); CALL_SUBTEST( ( test_complex2d<double,4,8> () ) );
							 | 
						|
								  //CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) );
							 | 
						|
								  CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); 
							 | 
						|
								  CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); 
							 | 
						|
								  CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); 
							 | 
						|
								  CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); 
							 | 
						|
								  CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); 
							 | 
						|
								  CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); 
							 | 
						|
								  CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); 
							 | 
						|
								
							 | 
						|
								  CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); 
							 | 
						|
								  CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); 
							 | 
						|
								  CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); 
							 | 
						|
								  CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); 
							 | 
						|
								  CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); 
							 | 
						|
								  
							 | 
						|
								  #ifdef STORMEIGEN_HAS_FFTWL
							 | 
						|
								  CALL_SUBTEST( test_complex<long double>(32) );
							 | 
						|
								  CALL_SUBTEST( test_complex<long double>(256) );
							 | 
						|
								  CALL_SUBTEST( test_complex<long double>(3*8) );
							 | 
						|
								  CALL_SUBTEST( test_complex<long double>(5*32) );
							 | 
						|
								  CALL_SUBTEST( test_complex<long double>(2*3*4) );
							 | 
						|
								  CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
							 | 
						|
								  CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
							 | 
						|
								  
							 | 
						|
								  CALL_SUBTEST( test_scalar<long double>(32) );
							 | 
						|
								  CALL_SUBTEST( test_scalar<long double>(45) );
							 | 
						|
								  CALL_SUBTEST( test_scalar<long double>(50) );
							 | 
						|
								  CALL_SUBTEST( test_scalar<long double>(256) );
							 | 
						|
								  CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
							 | 
						|
								  #endif
							 | 
						|
								}
							 |