You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							228 lines
						
					
					
						
							8.5 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							228 lines
						
					
					
						
							8.5 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| // discard stack allocation as that too bypasses malloc | |
| #define EIGEN_STACK_ALLOCATION_LIMIT 0 | |
| // heap allocation will raise an assert if enabled at runtime | |
| #define EIGEN_RUNTIME_NO_MALLOC | |
|  | |
| #include "main.h" | |
| #include <Eigen/Cholesky> | |
| #include <Eigen/Eigenvalues> | |
| #include <Eigen/LU> | |
| #include <Eigen/QR> | |
| #include <Eigen/SVD> | |
|  | |
| template<typename MatrixType> void nomalloc(const MatrixType& m) | |
| { | |
|   /* this test check no dynamic memory allocation are issued with fixed-size matrices | |
|   */ | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), | |
|              m2 = MatrixType::Random(rows, cols), | |
|              m3(rows, cols); | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>(); | |
| 
 | |
|   Index r = internal::random<Index>(0, rows-1), | |
|         c = internal::random<Index>(0, cols-1); | |
| 
 | |
|   VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2); | |
|   VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c))); | |
|   VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix()); | |
|   VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2)); | |
|    | |
|   m2.col(0).noalias() = m1 * m1.col(0); | |
|   m2.col(0).noalias() -= m1.adjoint() * m1.col(0); | |
|   m2.col(0).noalias() -= m1 * m1.row(0).adjoint(); | |
|   m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint(); | |
| 
 | |
|   m2.row(0).noalias() = m1.row(0) * m1; | |
|   m2.row(0).noalias() -= m1.row(0) * m1.adjoint(); | |
|   m2.row(0).noalias() -= m1.col(0).adjoint() * m1; | |
|   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint(); | |
|   VERIFY_IS_APPROX(m2,m2); | |
|    | |
|   m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0); | |
|   m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0); | |
|   m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint(); | |
|   m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint(); | |
| 
 | |
|   m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>(); | |
|   m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>(); | |
|   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>(); | |
|   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>(); | |
|   VERIFY_IS_APPROX(m2,m2); | |
|    | |
|   m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0); | |
|   m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0); | |
|   m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint(); | |
|   m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint(); | |
| 
 | |
|   m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>(); | |
|   m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>(); | |
|   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>(); | |
|   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>(); | |
|   VERIFY_IS_APPROX(m2,m2); | |
|    | |
|   m2.template selfadjointView<Lower>().rankUpdate(m1.col(0),-1); | |
|   m2.template selfadjointView<Lower>().rankUpdate(m1.row(0),-1); | |
| 
 | |
|   // The following fancy matrix-matrix products are not safe yet regarding static allocation | |
| //   m1 += m1.template triangularView<Upper>() * m2.col(; | |
| //   m1.template selfadjointView<Lower>().rankUpdate(m2); | |
| //   m1 += m1.template triangularView<Upper>() * m2; | |
| //   m1 += m1.template selfadjointView<Lower>() * m2; | |
| //   VERIFY_IS_APPROX(m1,m1); | |
| } | |
| 
 | |
| template<typename Scalar> | |
| void ctms_decompositions() | |
| { | |
|   const int maxSize = 16; | |
|   const int size    = 12; | |
| 
 | |
|   typedef Eigen::Matrix<Scalar, | |
|                         Eigen::Dynamic, Eigen::Dynamic, | |
|                         0, | |
|                         maxSize, maxSize> Matrix; | |
| 
 | |
|   typedef Eigen::Matrix<Scalar, | |
|                         Eigen::Dynamic, 1, | |
|                         0, | |
|                         maxSize, 1> Vector; | |
| 
 | |
|   typedef Eigen::Matrix<std::complex<Scalar>, | |
|                         Eigen::Dynamic, Eigen::Dynamic, | |
|                         0, | |
|                         maxSize, maxSize> ComplexMatrix; | |
| 
 | |
|   const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size)); | |
|   Matrix X(size,size); | |
|   const ComplexMatrix complexA(ComplexMatrix::Random(size, size)); | |
|   const Matrix saA = A.adjoint() * A; | |
|   const Vector b(Vector::Random(size)); | |
|   Vector x(size); | |
| 
 | |
|   // Cholesky module | |
|   Eigen::LLT<Matrix>  LLT;  LLT.compute(A); | |
|   X = LLT.solve(B); | |
|   x = LLT.solve(b); | |
|   Eigen::LDLT<Matrix> LDLT; LDLT.compute(A); | |
|   X = LDLT.solve(B); | |
|   x = LDLT.solve(b); | |
| 
 | |
|   // Eigenvalues module | |
|   Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp;        hessDecomp.compute(complexA); | |
|   Eigen::ComplexSchur<ComplexMatrix>            cSchur(size);      cSchur.compute(complexA); | |
|   Eigen::ComplexEigenSolver<ComplexMatrix>      cEigSolver;        cEigSolver.compute(complexA); | |
|   Eigen::EigenSolver<Matrix>                    eigSolver;         eigSolver.compute(A); | |
|   Eigen::SelfAdjointEigenSolver<Matrix>         saEigSolver(size); saEigSolver.compute(saA); | |
|   Eigen::Tridiagonalization<Matrix>             tridiag;           tridiag.compute(saA); | |
| 
 | |
|   // LU module | |
|   Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A); | |
|   X = ppLU.solve(B); | |
|   x = ppLU.solve(b); | |
|   Eigen::FullPivLU<Matrix>    fpLU; fpLU.compute(A); | |
|   X = fpLU.solve(B); | |
|   x = fpLU.solve(b); | |
| 
 | |
|   // QR module | |
|   Eigen::HouseholderQR<Matrix>        hQR;  hQR.compute(A); | |
|   X = hQR.solve(B); | |
|   x = hQR.solve(b); | |
|   Eigen::ColPivHouseholderQR<Matrix>  cpQR; cpQR.compute(A); | |
|   X = cpQR.solve(B); | |
|   x = cpQR.solve(b); | |
|   Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A); | |
|   // FIXME X = fpQR.solve(B); | |
|   x = fpQR.solve(b); | |
| 
 | |
|   // SVD module | |
|   Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A, ComputeFullU | ComputeFullV); | |
| } | |
| 
 | |
| void test_zerosized() { | |
|   // default constructors: | |
|   Eigen::MatrixXd A; | |
|   Eigen::VectorXd v; | |
|   // explicit zero-sized: | |
|   Eigen::ArrayXXd A0(0,0); | |
|   Eigen::ArrayXd v0(0); | |
| 
 | |
|   // assigning empty objects to each other: | |
|   A=A0; | |
|   v=v0; | |
| } | |
| 
 | |
| template<typename MatrixType> void test_reference(const MatrixType& m) { | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   enum { Flag          =  MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor}; | |
|   enum { TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor}; | |
|   typename MatrixType::Index rows = m.rows(), cols=m.cols(); | |
|   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag         > MatrixX; | |
|   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag> MatrixXT; | |
|   // Dynamic reference: | |
|   typedef Eigen::Ref<const MatrixX  > Ref; | |
|   typedef Eigen::Ref<const MatrixXT > RefT; | |
| 
 | |
|   Ref r1(m); | |
|   Ref r2(m.block(rows/3, cols/4, rows/2, cols/2)); | |
|   RefT r3(m.transpose()); | |
|   RefT r4(m.topLeftCorner(rows/2, cols/2).transpose()); | |
| 
 | |
|   VERIFY_RAISES_ASSERT(RefT r5(m)); | |
|   VERIFY_RAISES_ASSERT(Ref r6(m.transpose())); | |
|   VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m)); | |
| 
 | |
|   // Copy constructors shall also never malloc | |
|   Ref r8 = r1; | |
|   RefT r9 = r3; | |
| 
 | |
|   // Initializing from a compatible Ref shall also never malloc | |
|   Eigen::Ref<const MatrixX, Unaligned, Stride<Dynamic, Dynamic> > r10=r8, r11=m; | |
| 
 | |
|   // Initializing from an incompatible Ref will malloc: | |
|   typedef Eigen::Ref<const MatrixX, Aligned> RefAligned; | |
|   VERIFY_RAISES_ASSERT(RefAligned r12=r10); | |
|   VERIFY_RAISES_ASSERT(Ref r13=r10); // r10 has more dynamic strides | |
|  | |
| } | |
| 
 | |
| void test_nomalloc() | |
| { | |
|   // create some dynamic objects | |
|   Eigen::MatrixXd M1 = MatrixXd::Random(3,3); | |
|   Ref<const MatrixXd> R1 = 2.0*M1; // Ref requires temporary | |
|  | |
|   // from here on prohibit malloc: | |
|   Eigen::internal::set_is_malloc_allowed(false); | |
| 
 | |
|   // check that our operator new is indeed called: | |
|   VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3))); | |
|   CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) ); | |
|   CALL_SUBTEST_2(nomalloc(Matrix4d()) ); | |
|   CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) ); | |
|    | |
|   // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms) | |
|   CALL_SUBTEST_4(ctms_decompositions<float>()); | |
| 
 | |
|   CALL_SUBTEST_5(test_zerosized()); | |
| 
 | |
|   CALL_SUBTEST_6(test_reference(Matrix<float,32,32>())); | |
|   CALL_SUBTEST_7(test_reference(R1)); | |
|   CALL_SUBTEST_8(Ref<MatrixXd> R2 = M1.topRows<2>(); test_reference(R2)); | |
| }
 |