You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							796 lines
						
					
					
						
							30 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							796 lines
						
					
					
						
							30 KiB
						
					
					
				| // Copyright 2007, Google Inc. | |
| // All rights reserved. | |
| // | |
| // Redistribution and use in source and binary forms, with or without | |
| // modification, are permitted provided that the following conditions are | |
| // met: | |
| // | |
| //     * Redistributions of source code must retain the above copyright | |
| // notice, this list of conditions and the following disclaimer. | |
| //     * Redistributions in binary form must reproduce the above | |
| // copyright notice, this list of conditions and the following disclaimer | |
| // in the documentation and/or other materials provided with the | |
| // distribution. | |
| //     * Neither the name of Google Inc. nor the names of its | |
| // contributors may be used to endorse or promote products derived from | |
| // this software without specific prior written permission. | |
| // | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| // | |
| // Author: wan@google.com (Zhanyong Wan) | |
|  | |
| // Google Test - The Google C++ Testing Framework | |
| // | |
| // This file implements a universal value printer that can print a | |
| // value of any type T: | |
| // | |
| //   void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); | |
| // | |
| // A user can teach this function how to print a class type T by | |
| // defining either operator<<() or PrintTo() in the namespace that | |
| // defines T.  More specifically, the FIRST defined function in the | |
| // following list will be used (assuming T is defined in namespace | |
| // foo): | |
| // | |
| //   1. foo::PrintTo(const T&, ostream*) | |
| //   2. operator<<(ostream&, const T&) defined in either foo or the | |
| //      global namespace. | |
| // | |
| // If none of the above is defined, it will print the debug string of | |
| // the value if it is a protocol buffer, or print the raw bytes in the | |
| // value otherwise. | |
| // | |
| // To aid debugging: when T is a reference type, the address of the | |
| // value is also printed; when T is a (const) char pointer, both the | |
| // pointer value and the NUL-terminated string it points to are | |
| // printed. | |
| // | |
| // We also provide some convenient wrappers: | |
| // | |
| //   // Prints a value to a string.  For a (const or not) char | |
| //   // pointer, the NUL-terminated string (but not the pointer) is | |
| //   // printed. | |
| //   std::string ::testing::PrintToString(const T& value); | |
| // | |
| //   // Prints a value tersely: for a reference type, the referenced | |
| //   // value (but not the address) is printed; for a (const or not) char | |
| //   // pointer, the NUL-terminated string (but not the pointer) is | |
| //   // printed. | |
| //   void ::testing::internal::UniversalTersePrint(const T& value, ostream*); | |
| // | |
| //   // Prints value using the type inferred by the compiler.  The difference | |
| //   // from UniversalTersePrint() is that this function prints both the | |
| //   // pointer and the NUL-terminated string for a (const or not) char pointer. | |
| //   void ::testing::internal::UniversalPrint(const T& value, ostream*); | |
| // | |
| //   // Prints the fields of a tuple tersely to a string vector, one | |
| //   // element for each field. Tuple support must be enabled in | |
| //   // gtest-port.h. | |
| //   std::vector<string> UniversalTersePrintTupleFieldsToStrings( | |
| //       const Tuple& value); | |
| // | |
| // Known limitation: | |
| // | |
| // The print primitives print the elements of an STL-style container | |
| // using the compiler-inferred type of *iter where iter is a | |
| // const_iterator of the container.  When const_iterator is an input | |
| // iterator but not a forward iterator, this inferred type may not | |
| // match value_type, and the print output may be incorrect.  In | |
| // practice, this is rarely a problem as for most containers | |
| // const_iterator is a forward iterator.  We'll fix this if there's an | |
| // actual need for it.  Note that this fix cannot rely on value_type | |
| // being defined as many user-defined container types don't have | |
| // value_type. | |
|  | |
| #ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ | |
| #define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ | |
|  | |
| #include <ostream>  // NOLINT | |
| #include <sstream> | |
| #include <string> | |
| #include <utility> | |
| #include <vector> | |
| #include "gtest/internal/gtest-port.h" | |
| #include "gtest/internal/gtest-internal.h" | |
|  | |
| namespace testing { | |
| 
 | |
| // Definitions in the 'internal' and 'internal2' name spaces are | |
| // subject to change without notice.  DO NOT USE THEM IN USER CODE! | |
| namespace internal2 { | |
| 
 | |
| // Prints the given number of bytes in the given object to the given | |
| // ostream. | |
| GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, | |
|                                      size_t count, | |
|                                      ::std::ostream* os); | |
| 
 | |
| // For selecting which printer to use when a given type has neither << | |
| // nor PrintTo(). | |
| enum TypeKind { | |
|   kProtobuf,              // a protobuf type | |
|   kConvertibleToInteger,  // a type implicitly convertible to BiggestInt | |
|                           // (e.g. a named or unnamed enum type) | |
|   kOtherType              // anything else | |
| }; | |
| 
 | |
| // TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called | |
| // by the universal printer to print a value of type T when neither | |
| // operator<< nor PrintTo() is defined for T, where kTypeKind is the | |
| // "kind" of T as defined by enum TypeKind. | |
| template <typename T, TypeKind kTypeKind> | |
| class TypeWithoutFormatter { | |
|  public: | |
|   // This default version is called when kTypeKind is kOtherType. | |
|   static void PrintValue(const T& value, ::std::ostream* os) { | |
|     PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value), | |
|                          sizeof(value), os); | |
|   } | |
| }; | |
| 
 | |
| // We print a protobuf using its ShortDebugString() when the string | |
| // doesn't exceed this many characters; otherwise we print it using | |
| // DebugString() for better readability. | |
| const size_t kProtobufOneLinerMaxLength = 50; | |
| 
 | |
| template <typename T> | |
| class TypeWithoutFormatter<T, kProtobuf> { | |
|  public: | |
|   static void PrintValue(const T& value, ::std::ostream* os) { | |
|     const ::testing::internal::string short_str = value.ShortDebugString(); | |
|     const ::testing::internal::string pretty_str = | |
|         short_str.length() <= kProtobufOneLinerMaxLength ? | |
|         short_str : ("\n" + value.DebugString()); | |
|     *os << ("<" + pretty_str + ">"); | |
|   } | |
| }; | |
| 
 | |
| template <typename T> | |
| class TypeWithoutFormatter<T, kConvertibleToInteger> { | |
|  public: | |
|   // Since T has no << operator or PrintTo() but can be implicitly | |
|   // converted to BiggestInt, we print it as a BiggestInt. | |
|   // | |
|   // Most likely T is an enum type (either named or unnamed), in which | |
|   // case printing it as an integer is the desired behavior.  In case | |
|   // T is not an enum, printing it as an integer is the best we can do | |
|   // given that it has no user-defined printer. | |
|   static void PrintValue(const T& value, ::std::ostream* os) { | |
|     const internal::BiggestInt kBigInt = value; | |
|     *os << kBigInt; | |
|   } | |
| }; | |
| 
 | |
| // Prints the given value to the given ostream.  If the value is a | |
| // protocol message, its debug string is printed; if it's an enum or | |
| // of a type implicitly convertible to BiggestInt, it's printed as an | |
| // integer; otherwise the bytes in the value are printed.  This is | |
| // what UniversalPrinter<T>::Print() does when it knows nothing about | |
| // type T and T has neither << operator nor PrintTo(). | |
| // | |
| // A user can override this behavior for a class type Foo by defining | |
| // a << operator in the namespace where Foo is defined. | |
| // | |
| // We put this operator in namespace 'internal2' instead of 'internal' | |
| // to simplify the implementation, as much code in 'internal' needs to | |
| // use << in STL, which would conflict with our own << were it defined | |
| // in 'internal'. | |
| // | |
| // Note that this operator<< takes a generic std::basic_ostream<Char, | |
| // CharTraits> type instead of the more restricted std::ostream.  If | |
| // we define it to take an std::ostream instead, we'll get an | |
| // "ambiguous overloads" compiler error when trying to print a type | |
| // Foo that supports streaming to std::basic_ostream<Char, | |
| // CharTraits>, as the compiler cannot tell whether | |
| // operator<<(std::ostream&, const T&) or | |
| // operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more | |
| // specific. | |
| template <typename Char, typename CharTraits, typename T> | |
| ::std::basic_ostream<Char, CharTraits>& operator<<( | |
|     ::std::basic_ostream<Char, CharTraits>& os, const T& x) { | |
|   TypeWithoutFormatter<T, | |
|       (internal::IsAProtocolMessage<T>::value ? kProtobuf : | |
|        internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ? | |
|        kConvertibleToInteger : kOtherType)>::PrintValue(x, &os); | |
|   return os; | |
| } | |
| 
 | |
| }  // namespace internal2 | |
| }  // namespace testing | |
|  | |
| // This namespace MUST NOT BE NESTED IN ::testing, or the name look-up | |
| // magic needed for implementing UniversalPrinter won't work. | |
| namespace testing_internal { | |
| 
 | |
| // Used to print a value that is not an STL-style container when the | |
| // user doesn't define PrintTo() for it. | |
| template <typename T> | |
| void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) { | |
|   // With the following statement, during unqualified name lookup, | |
|   // testing::internal2::operator<< appears as if it was declared in | |
|   // the nearest enclosing namespace that contains both | |
|   // ::testing_internal and ::testing::internal2, i.e. the global | |
|   // namespace.  For more details, refer to the C++ Standard section | |
|   // 7.3.4-1 [namespace.udir].  This allows us to fall back onto | |
|   // testing::internal2::operator<< in case T doesn't come with a << | |
|   // operator. | |
|   // | |
|   // We cannot write 'using ::testing::internal2::operator<<;', which | |
|   // gcc 3.3 fails to compile due to a compiler bug. | |
|   using namespace ::testing::internal2;  // NOLINT | |
|  | |
|   // Assuming T is defined in namespace foo, in the next statement, | |
|   // the compiler will consider all of: | |
|   // | |
|   //   1. foo::operator<< (thanks to Koenig look-up), | |
|   //   2. ::operator<< (as the current namespace is enclosed in ::), | |
|   //   3. testing::internal2::operator<< (thanks to the using statement above). | |
|   // | |
|   // The operator<< whose type matches T best will be picked. | |
|   // | |
|   // We deliberately allow #2 to be a candidate, as sometimes it's | |
|   // impossible to define #1 (e.g. when foo is ::std, defining | |
|   // anything in it is undefined behavior unless you are a compiler | |
|   // vendor.). | |
|   *os << value; | |
| } | |
| 
 | |
| }  // namespace testing_internal | |
|  | |
| namespace testing { | |
| namespace internal { | |
| 
 | |
| // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given | |
| // value to the given ostream.  The caller must ensure that | |
| // 'ostream_ptr' is not NULL, or the behavior is undefined. | |
| // | |
| // We define UniversalPrinter as a class template (as opposed to a | |
| // function template), as we need to partially specialize it for | |
| // reference types, which cannot be done with function templates. | |
| template <typename T> | |
| class UniversalPrinter; | |
| 
 | |
| template <typename T> | |
| void UniversalPrint(const T& value, ::std::ostream* os); | |
| 
 | |
| // Used to print an STL-style container when the user doesn't define | |
| // a PrintTo() for it. | |
| template <typename C> | |
| void DefaultPrintTo(IsContainer /* dummy */, | |
|                     false_type /* is not a pointer */, | |
|                     const C& container, ::std::ostream* os) { | |
|   const size_t kMaxCount = 32;  // The maximum number of elements to print. | |
|   *os << '{'; | |
|   size_t count = 0; | |
|   for (typename C::const_iterator it = container.begin(); | |
|        it != container.end(); ++it, ++count) { | |
|     if (count > 0) { | |
|       *os << ','; | |
|       if (count == kMaxCount) {  // Enough has been printed. | |
|         *os << " ..."; | |
|         break; | |
|       } | |
|     } | |
|     *os << ' '; | |
|     // We cannot call PrintTo(*it, os) here as PrintTo() doesn't | |
|     // handle *it being a native array. | |
|     internal::UniversalPrint(*it, os); | |
|   } | |
| 
 | |
|   if (count > 0) { | |
|     *os << ' '; | |
|   } | |
|   *os << '}'; | |
| } | |
| 
 | |
| // Used to print a pointer that is neither a char pointer nor a member | |
| // pointer, when the user doesn't define PrintTo() for it.  (A member | |
| // variable pointer or member function pointer doesn't really point to | |
| // a location in the address space.  Their representation is | |
| // implementation-defined.  Therefore they will be printed as raw | |
| // bytes.) | |
| template <typename T> | |
| void DefaultPrintTo(IsNotContainer /* dummy */, | |
|                     true_type /* is a pointer */, | |
|                     T* p, ::std::ostream* os) { | |
|   if (p == NULL) { | |
|     *os << "NULL"; | |
|   } else { | |
|     // C++ doesn't allow casting from a function pointer to any object | |
|     // pointer. | |
|     // | |
|     // IsTrue() silences warnings: "Condition is always true", | |
|     // "unreachable code". | |
|     if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) { | |
|       // T is not a function type.  We just call << to print p, | |
|       // relying on ADL to pick up user-defined << for their pointer | |
|       // types, if any. | |
|       *os << p; | |
|     } else { | |
|       // T is a function type, so '*os << p' doesn't do what we want | |
|       // (it just prints p as bool).  We want to print p as a const | |
|       // void*.  However, we cannot cast it to const void* directly, | |
|       // even using reinterpret_cast, as earlier versions of gcc | |
|       // (e.g. 3.4.5) cannot compile the cast when p is a function | |
|       // pointer.  Casting to UInt64 first solves the problem. | |
|       *os << reinterpret_cast<const void*>( | |
|           reinterpret_cast<internal::UInt64>(p)); | |
|     } | |
|   } | |
| } | |
| 
 | |
| // Used to print a non-container, non-pointer value when the user | |
| // doesn't define PrintTo() for it. | |
| template <typename T> | |
| void DefaultPrintTo(IsNotContainer /* dummy */, | |
|                     false_type /* is not a pointer */, | |
|                     const T& value, ::std::ostream* os) { | |
|   ::testing_internal::DefaultPrintNonContainerTo(value, os); | |
| } | |
| 
 | |
| // Prints the given value using the << operator if it has one; | |
| // otherwise prints the bytes in it.  This is what | |
| // UniversalPrinter<T>::Print() does when PrintTo() is not specialized | |
| // or overloaded for type T. | |
| // | |
| // A user can override this behavior for a class type Foo by defining | |
| // an overload of PrintTo() in the namespace where Foo is defined.  We | |
| // give the user this option as sometimes defining a << operator for | |
| // Foo is not desirable (e.g. the coding style may prevent doing it, | |
| // or there is already a << operator but it doesn't do what the user | |
| // wants). | |
| template <typename T> | |
| void PrintTo(const T& value, ::std::ostream* os) { | |
|   // DefaultPrintTo() is overloaded.  The type of its first two | |
|   // arguments determine which version will be picked.  If T is an | |
|   // STL-style container, the version for container will be called; if | |
|   // T is a pointer, the pointer version will be called; otherwise the | |
|   // generic version will be called. | |
|   // | |
|   // Note that we check for container types here, prior to we check | |
|   // for protocol message types in our operator<<.  The rationale is: | |
|   // | |
|   // For protocol messages, we want to give people a chance to | |
|   // override Google Mock's format by defining a PrintTo() or | |
|   // operator<<.  For STL containers, other formats can be | |
|   // incompatible with Google Mock's format for the container | |
|   // elements; therefore we check for container types here to ensure | |
|   // that our format is used. | |
|   // | |
|   // The second argument of DefaultPrintTo() is needed to bypass a bug | |
|   // in Symbian's C++ compiler that prevents it from picking the right | |
|   // overload between: | |
|   // | |
|   //   PrintTo(const T& x, ...); | |
|   //   PrintTo(T* x, ...); | |
|   DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os); | |
| } | |
| 
 | |
| // The following list of PrintTo() overloads tells | |
| // UniversalPrinter<T>::Print() how to print standard types (built-in | |
| // types, strings, plain arrays, and pointers). | |
|  | |
| // Overloads for various char types. | |
| GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); | |
| GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); | |
| inline void PrintTo(char c, ::std::ostream* os) { | |
|   // When printing a plain char, we always treat it as unsigned.  This | |
|   // way, the output won't be affected by whether the compiler thinks | |
|   // char is signed or not. | |
|   PrintTo(static_cast<unsigned char>(c), os); | |
| } | |
| 
 | |
| // Overloads for other simple built-in types. | |
| inline void PrintTo(bool x, ::std::ostream* os) { | |
|   *os << (x ? "true" : "false"); | |
| } | |
| 
 | |
| // Overload for wchar_t type. | |
| // Prints a wchar_t as a symbol if it is printable or as its internal | |
| // code otherwise and also as its decimal code (except for L'\0'). | |
| // The L'\0' char is printed as "L'\\0'". The decimal code is printed | |
| // as signed integer when wchar_t is implemented by the compiler | |
| // as a signed type and is printed as an unsigned integer when wchar_t | |
| // is implemented as an unsigned type. | |
| GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); | |
| 
 | |
| // Overloads for C strings. | |
| GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); | |
| inline void PrintTo(char* s, ::std::ostream* os) { | |
|   PrintTo(ImplicitCast_<const char*>(s), os); | |
| } | |
| 
 | |
| // signed/unsigned char is often used for representing binary data, so | |
| // we print pointers to it as void* to be safe. | |
| inline void PrintTo(const signed char* s, ::std::ostream* os) { | |
|   PrintTo(ImplicitCast_<const void*>(s), os); | |
| } | |
| inline void PrintTo(signed char* s, ::std::ostream* os) { | |
|   PrintTo(ImplicitCast_<const void*>(s), os); | |
| } | |
| inline void PrintTo(const unsigned char* s, ::std::ostream* os) { | |
|   PrintTo(ImplicitCast_<const void*>(s), os); | |
| } | |
| inline void PrintTo(unsigned char* s, ::std::ostream* os) { | |
|   PrintTo(ImplicitCast_<const void*>(s), os); | |
| } | |
| 
 | |
| // MSVC can be configured to define wchar_t as a typedef of unsigned | |
| // short.  It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native | |
| // type.  When wchar_t is a typedef, defining an overload for const | |
| // wchar_t* would cause unsigned short* be printed as a wide string, | |
| // possibly causing invalid memory accesses. | |
| #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) | |
| // Overloads for wide C strings | |
| GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); | |
| inline void PrintTo(wchar_t* s, ::std::ostream* os) { | |
|   PrintTo(ImplicitCast_<const wchar_t*>(s), os); | |
| } | |
| #endif | |
|  | |
| // Overload for C arrays.  Multi-dimensional arrays are printed | |
| // properly. | |
|  | |
| // Prints the given number of elements in an array, without printing | |
| // the curly braces. | |
| template <typename T> | |
| void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { | |
|   UniversalPrint(a[0], os); | |
|   for (size_t i = 1; i != count; i++) { | |
|     *os << ", "; | |
|     UniversalPrint(a[i], os); | |
|   } | |
| } | |
| 
 | |
| // Overloads for ::string and ::std::string. | |
| #if GTEST_HAS_GLOBAL_STRING | |
| GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os); | |
| inline void PrintTo(const ::string& s, ::std::ostream* os) { | |
|   PrintStringTo(s, os); | |
| } | |
| #endif  // GTEST_HAS_GLOBAL_STRING | |
|  | |
| GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os); | |
| inline void PrintTo(const ::std::string& s, ::std::ostream* os) { | |
|   PrintStringTo(s, os); | |
| } | |
| 
 | |
| // Overloads for ::wstring and ::std::wstring. | |
| #if GTEST_HAS_GLOBAL_WSTRING | |
| GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os); | |
| inline void PrintTo(const ::wstring& s, ::std::ostream* os) { | |
|   PrintWideStringTo(s, os); | |
| } | |
| #endif  // GTEST_HAS_GLOBAL_WSTRING | |
|  | |
| #if GTEST_HAS_STD_WSTRING | |
| GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os); | |
| inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { | |
|   PrintWideStringTo(s, os); | |
| } | |
| #endif  // GTEST_HAS_STD_WSTRING | |
|  | |
| #if GTEST_HAS_TR1_TUPLE | |
| // Overload for ::std::tr1::tuple.  Needed for printing function arguments, | |
| // which are packed as tuples. | |
|  | |
| // Helper function for printing a tuple.  T must be instantiated with | |
| // a tuple type. | |
| template <typename T> | |
| void PrintTupleTo(const T& t, ::std::ostream* os); | |
| 
 | |
| // Overloaded PrintTo() for tuples of various arities.  We support | |
| // tuples of up-to 10 fields.  The following implementation works | |
| // regardless of whether tr1::tuple is implemented using the | |
| // non-standard variadic template feature or not. | |
|  | |
| inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) { | |
|   PrintTupleTo(t, os); | |
| } | |
| 
 | |
| template <typename T1> | |
| void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) { | |
|   PrintTupleTo(t, os); | |
| } | |
| 
 | |
| template <typename T1, typename T2> | |
| void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) { | |
|   PrintTupleTo(t, os); | |
| } | |
| 
 | |
| template <typename T1, typename T2, typename T3> | |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) { | |
|   PrintTupleTo(t, os); | |
| } | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4> | |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) { | |
|   PrintTupleTo(t, os); | |
| } | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4, typename T5> | |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t, | |
|              ::std::ostream* os) { | |
|   PrintTupleTo(t, os); | |
| } | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, | |
|           typename T6> | |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t, | |
|              ::std::ostream* os) { | |
|   PrintTupleTo(t, os); | |
| } | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, | |
|           typename T6, typename T7> | |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t, | |
|              ::std::ostream* os) { | |
|   PrintTupleTo(t, os); | |
| } | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, | |
|           typename T6, typename T7, typename T8> | |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t, | |
|              ::std::ostream* os) { | |
|   PrintTupleTo(t, os); | |
| } | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, | |
|           typename T6, typename T7, typename T8, typename T9> | |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, | |
|              ::std::ostream* os) { | |
|   PrintTupleTo(t, os); | |
| } | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, | |
|           typename T6, typename T7, typename T8, typename T9, typename T10> | |
| void PrintTo( | |
|     const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t, | |
|     ::std::ostream* os) { | |
|   PrintTupleTo(t, os); | |
| } | |
| #endif  // GTEST_HAS_TR1_TUPLE | |
|  | |
| // Overload for std::pair. | |
| template <typename T1, typename T2> | |
| void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) { | |
|   *os << '('; | |
|   // We cannot use UniversalPrint(value.first, os) here, as T1 may be | |
|   // a reference type.  The same for printing value.second. | |
|   UniversalPrinter<T1>::Print(value.first, os); | |
|   *os << ", "; | |
|   UniversalPrinter<T2>::Print(value.second, os); | |
|   *os << ')'; | |
| } | |
| 
 | |
| // Implements printing a non-reference type T by letting the compiler | |
| // pick the right overload of PrintTo() for T. | |
| template <typename T> | |
| class UniversalPrinter { | |
|  public: | |
|   // MSVC warns about adding const to a function type, so we want to | |
|   // disable the warning. | |
| #ifdef _MSC_VER | |
| # pragma warning(push)          // Saves the current warning state. | |
| # pragma warning(disable:4180)  // Temporarily disables warning 4180. | |
| #endif  // _MSC_VER | |
|  | |
|   // Note: we deliberately don't call this PrintTo(), as that name | |
|   // conflicts with ::testing::internal::PrintTo in the body of the | |
|   // function. | |
|   static void Print(const T& value, ::std::ostream* os) { | |
|     // By default, ::testing::internal::PrintTo() is used for printing | |
|     // the value. | |
|     // | |
|     // Thanks to Koenig look-up, if T is a class and has its own | |
|     // PrintTo() function defined in its namespace, that function will | |
|     // be visible here.  Since it is more specific than the generic ones | |
|     // in ::testing::internal, it will be picked by the compiler in the | |
|     // following statement - exactly what we want. | |
|     PrintTo(value, os); | |
|   } | |
| 
 | |
| #ifdef _MSC_VER | |
| # pragma warning(pop)           // Restores the warning state. | |
| #endif  // _MSC_VER | |
| }; | |
| 
 | |
| // UniversalPrintArray(begin, len, os) prints an array of 'len' | |
| // elements, starting at address 'begin'. | |
| template <typename T> | |
| void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { | |
|   if (len == 0) { | |
|     *os << "{}"; | |
|   } else { | |
|     *os << "{ "; | |
|     const size_t kThreshold = 18; | |
|     const size_t kChunkSize = 8; | |
|     // If the array has more than kThreshold elements, we'll have to | |
|     // omit some details by printing only the first and the last | |
|     // kChunkSize elements. | |
|     // TODO(wan@google.com): let the user control the threshold using a flag. | |
|     if (len <= kThreshold) { | |
|       PrintRawArrayTo(begin, len, os); | |
|     } else { | |
|       PrintRawArrayTo(begin, kChunkSize, os); | |
|       *os << ", ..., "; | |
|       PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); | |
|     } | |
|     *os << " }"; | |
|   } | |
| } | |
| // This overload prints a (const) char array compactly. | |
| GTEST_API_ void UniversalPrintArray(const char* begin, | |
|                                     size_t len, | |
|                                     ::std::ostream* os); | |
| 
 | |
| // Implements printing an array type T[N]. | |
| template <typename T, size_t N> | |
| class UniversalPrinter<T[N]> { | |
|  public: | |
|   // Prints the given array, omitting some elements when there are too | |
|   // many. | |
|   static void Print(const T (&a)[N], ::std::ostream* os) { | |
|     UniversalPrintArray(a, N, os); | |
|   } | |
| }; | |
| 
 | |
| // Implements printing a reference type T&. | |
| template <typename T> | |
| class UniversalPrinter<T&> { | |
|  public: | |
|   // MSVC warns about adding const to a function type, so we want to | |
|   // disable the warning. | |
| #ifdef _MSC_VER | |
| # pragma warning(push)          // Saves the current warning state. | |
| # pragma warning(disable:4180)  // Temporarily disables warning 4180. | |
| #endif  // _MSC_VER | |
|  | |
|   static void Print(const T& value, ::std::ostream* os) { | |
|     // Prints the address of the value.  We use reinterpret_cast here | |
|     // as static_cast doesn't compile when T is a function type. | |
|     *os << "@" << reinterpret_cast<const void*>(&value) << " "; | |
| 
 | |
|     // Then prints the value itself. | |
|     UniversalPrint(value, os); | |
|   } | |
| 
 | |
| #ifdef _MSC_VER | |
| # pragma warning(pop)           // Restores the warning state. | |
| #endif  // _MSC_VER | |
| }; | |
| 
 | |
| // Prints a value tersely: for a reference type, the referenced value | |
| // (but not the address) is printed; for a (const) char pointer, the | |
| // NUL-terminated string (but not the pointer) is printed. | |
| template <typename T> | |
| void UniversalTersePrint(const T& value, ::std::ostream* os) { | |
|   UniversalPrint(value, os); | |
| } | |
| inline void UniversalTersePrint(const char* str, ::std::ostream* os) { | |
|   if (str == NULL) { | |
|     *os << "NULL"; | |
|   } else { | |
|     UniversalPrint(string(str), os); | |
|   } | |
| } | |
| inline void UniversalTersePrint(char* str, ::std::ostream* os) { | |
|   UniversalTersePrint(static_cast<const char*>(str), os); | |
| } | |
| 
 | |
| // Prints a value using the type inferred by the compiler.  The | |
| // difference between this and UniversalTersePrint() is that for a | |
| // (const) char pointer, this prints both the pointer and the | |
| // NUL-terminated string. | |
| template <typename T> | |
| void UniversalPrint(const T& value, ::std::ostream* os) { | |
|   UniversalPrinter<T>::Print(value, os); | |
| } | |
| 
 | |
| #if GTEST_HAS_TR1_TUPLE | |
| typedef ::std::vector<string> Strings; | |
| 
 | |
| // This helper template allows PrintTo() for tuples and | |
| // UniversalTersePrintTupleFieldsToStrings() to be defined by | |
| // induction on the number of tuple fields.  The idea is that | |
| // TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N | |
| // fields in tuple t, and can be defined in terms of | |
| // TuplePrefixPrinter<N - 1>. | |
|  | |
| // The inductive case. | |
| template <size_t N> | |
| struct TuplePrefixPrinter { | |
|   // Prints the first N fields of a tuple. | |
|   template <typename Tuple> | |
|   static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { | |
|     TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os); | |
|     *os << ", "; | |
|     UniversalPrinter<typename ::std::tr1::tuple_element<N - 1, Tuple>::type> | |
|         ::Print(::std::tr1::get<N - 1>(t), os); | |
|   } | |
| 
 | |
|   // Tersely prints the first N fields of a tuple to a string vector, | |
|   // one element for each field. | |
|   template <typename Tuple> | |
|   static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { | |
|     TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings); | |
|     ::std::stringstream ss; | |
|     UniversalTersePrint(::std::tr1::get<N - 1>(t), &ss); | |
|     strings->push_back(ss.str()); | |
|   } | |
| }; | |
| 
 | |
| // Base cases. | |
| template <> | |
| struct TuplePrefixPrinter<0> { | |
|   template <typename Tuple> | |
|   static void PrintPrefixTo(const Tuple&, ::std::ostream*) {} | |
| 
 | |
|   template <typename Tuple> | |
|   static void TersePrintPrefixToStrings(const Tuple&, Strings*) {} | |
| }; | |
| // We have to specialize the entire TuplePrefixPrinter<> class | |
| // template here, even though the definition of | |
| // TersePrintPrefixToStrings() is the same as the generic version, as | |
| // Embarcadero (formerly CodeGear, formerly Borland) C++ doesn't | |
| // support specializing a method template of a class template. | |
| template <> | |
| struct TuplePrefixPrinter<1> { | |
|   template <typename Tuple> | |
|   static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { | |
|     UniversalPrinter<typename ::std::tr1::tuple_element<0, Tuple>::type>:: | |
|         Print(::std::tr1::get<0>(t), os); | |
|   } | |
| 
 | |
|   template <typename Tuple> | |
|   static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { | |
|     ::std::stringstream ss; | |
|     UniversalTersePrint(::std::tr1::get<0>(t), &ss); | |
|     strings->push_back(ss.str()); | |
|   } | |
| }; | |
| 
 | |
| // Helper function for printing a tuple.  T must be instantiated with | |
| // a tuple type. | |
| template <typename T> | |
| void PrintTupleTo(const T& t, ::std::ostream* os) { | |
|   *os << "("; | |
|   TuplePrefixPrinter< ::std::tr1::tuple_size<T>::value>:: | |
|       PrintPrefixTo(t, os); | |
|   *os << ")"; | |
| } | |
| 
 | |
| // Prints the fields of a tuple tersely to a string vector, one | |
| // element for each field.  See the comment before | |
| // UniversalTersePrint() for how we define "tersely". | |
| template <typename Tuple> | |
| Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { | |
|   Strings result; | |
|   TuplePrefixPrinter< ::std::tr1::tuple_size<Tuple>::value>:: | |
|       TersePrintPrefixToStrings(value, &result); | |
|   return result; | |
| } | |
| #endif  // GTEST_HAS_TR1_TUPLE | |
|  | |
| }  // namespace internal | |
|  | |
| template <typename T> | |
| ::std::string PrintToString(const T& value) { | |
|   ::std::stringstream ss; | |
|   internal::UniversalTersePrint(value, &ss); | |
|   return ss.str(); | |
| } | |
| 
 | |
| }  // namespace testing | |
|  | |
| #endif  // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
 |