You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							485 lines
						
					
					
						
							13 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							485 lines
						
					
					
						
							13 KiB
						
					
					
				| 
 | |
| //g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out | |
| //g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out | |
| // -DNOGMM -DNOMTL -DCSPARSE | |
| // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a | |
| #ifndef SIZE | |
| #define SIZE 100000 | |
| #endif | |
|  | |
| #ifndef NBPERROW | |
| #define NBPERROW 24 | |
| #endif | |
|  | |
| #ifndef REPEAT | |
| #define REPEAT 2 | |
| #endif | |
|  | |
| #ifndef NBTRIES | |
| #define NBTRIES 2 | |
| #endif | |
|  | |
| #ifndef KK | |
| #define KK 10 | |
| #endif | |
|  | |
| #ifndef NOGOOGLE | |
| #define EIGEN_GOOGLEHASH_SUPPORT | |
| #include <google/sparse_hash_map> | |
| #endif | |
|  | |
| #include "BenchSparseUtil.h" | |
|  | |
| #define CHECK_MEM | |
| // #define CHECK_MEM  std/**/::cout << "check mem\n"; getchar(); | |
|  | |
| #define BENCH(X) \ | |
|   timer.reset(); \ | |
|   for (int _j=0; _j<NBTRIES; ++_j) { \ | |
|     timer.start(); \ | |
|     for (int _k=0; _k<REPEAT; ++_k) { \ | |
|         X  \ | |
|   } timer.stop(); } | |
|  | |
| typedef std::vector<Vector2i> Coordinates; | |
| typedef std::vector<float> Values; | |
| 
 | |
| EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals); | |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals); | |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals); | |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals); | |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals); | |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals); | |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals); | |
| EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals); | |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals); | |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals); | |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals); | |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals); | |
| EIGEN_DONT_INLINE Scalar* setrand_mtl(const Coordinates& coords, const Values& vals); | |
| 
 | |
| int main(int argc, char *argv[]) | |
| { | |
|   int rows = SIZE; | |
|   int cols = SIZE; | |
|   bool fullyrand = true; | |
| 
 | |
|   BenchTimer timer; | |
|   Coordinates coords; | |
|   Values values; | |
|   if(fullyrand) | |
|   { | |
|     Coordinates pool; | |
|     pool.reserve(cols*NBPERROW); | |
|     std::cerr << "fill pool" << "\n"; | |
|     for (int i=0; i<cols*NBPERROW; ) | |
|     { | |
| //       DynamicSparseMatrix<int> stencil(SIZE,SIZE); | |
|       Vector2i ij(internal::random<int>(0,rows-1),internal::random<int>(0,cols-1)); | |
| //       if(stencil.coeffRef(ij.x(), ij.y())==0) | |
|       { | |
| //         stencil.coeffRef(ij.x(), ij.y()) = 1; | |
|         pool.push_back(ij); | |
| 
 | |
|       } | |
|       ++i; | |
|     } | |
|     std::cerr << "pool ok" << "\n"; | |
|     int n = cols*NBPERROW*KK; | |
|     coords.reserve(n); | |
|     values.reserve(n); | |
|     for (int i=0; i<n; ++i) | |
|     { | |
|       int i = internal::random<int>(0,pool.size()); | |
|       coords.push_back(pool[i]); | |
|       values.push_back(internal::random<Scalar>()); | |
|     } | |
|   } | |
|   else | |
|   { | |
|     for (int j=0; j<cols; ++j) | |
|     for (int i=0; i<NBPERROW; ++i) | |
|     { | |
|       coords.push_back(Vector2i(internal::random<int>(0,rows-1),j)); | |
|       values.push_back(internal::random<Scalar>()); | |
|     } | |
|   } | |
|   std::cout << "nnz = " << coords.size()  << "\n"; | |
|   CHECK_MEM | |
| 
 | |
|     // dense matrices | |
|     #ifdef DENSEMATRIX | |
|     { | |
|       BENCH(setrand_eigen_dense(coords,values);) | |
|       std::cout << "Eigen Dense\t" << timer.value() << "\n"; | |
|     } | |
|     #endif | |
|  | |
|     // eigen sparse matrices | |
| //     if (!fullyrand) | |
| //     { | |
| //       BENCH(setinnerrand_eigen(coords,values);) | |
| //       std::cout << "Eigen fillrand\t" << timer.value() << "\n"; | |
| //     } | |
|     { | |
|       BENCH(setrand_eigen_dynamic(coords,values);) | |
|       std::cout << "Eigen dynamic\t" << timer.value() << "\n"; | |
|     } | |
| //     { | |
| //       BENCH(setrand_eigen_compact(coords,values);) | |
| //       std::cout << "Eigen compact\t" << timer.value() << "\n"; | |
| //     } | |
|     { | |
|       BENCH(setrand_eigen_sumeq(coords,values);) | |
|       std::cout << "Eigen sumeq\t" << timer.value() << "\n"; | |
|     } | |
|     { | |
| //       BENCH(setrand_eigen_gnu_hash(coords,values);) | |
| //       std::cout << "Eigen std::map\t" << timer.value() << "\n"; | |
|     } | |
|     { | |
|       BENCH(setrand_scipy(coords,values);) | |
|       std::cout << "scipy\t" << timer.value() << "\n"; | |
|     } | |
|     #ifndef NOGOOGLE | |
|     { | |
|       BENCH(setrand_eigen_google_dense(coords,values);) | |
|       std::cout << "Eigen google dense\t" << timer.value() << "\n"; | |
|     } | |
|     { | |
|       BENCH(setrand_eigen_google_sparse(coords,values);) | |
|       std::cout << "Eigen google sparse\t" << timer.value() << "\n"; | |
|     } | |
|     #endif | |
|  | |
|     #ifndef NOUBLAS | |
|     { | |
| //       BENCH(setrand_ublas_mapped(coords,values);) | |
| //       std::cout << "ublas mapped\t" << timer.value() << "\n"; | |
|     } | |
|     { | |
|       BENCH(setrand_ublas_genvec(coords,values);) | |
|       std::cout << "ublas vecofvec\t" << timer.value() << "\n"; | |
|     } | |
|     /*{ | |
|       timer.reset(); | |
|       timer.start(); | |
|       for (int k=0; k<REPEAT; ++k) | |
|         setrand_ublas_compressed(coords,values); | |
|       timer.stop(); | |
|       std::cout << "ublas comp\t" << timer.value() << "\n"; | |
|     } | |
|     { | |
|       timer.reset(); | |
|       timer.start(); | |
|       for (int k=0; k<REPEAT; ++k) | |
|         setrand_ublas_coord(coords,values); | |
|       timer.stop(); | |
|       std::cout << "ublas coord\t" << timer.value() << "\n"; | |
|     }*/ | |
|     #endif | |
|  | |
| 
 | |
|     // MTL4 | |
|     #ifndef NOMTL | |
|     { | |
|       BENCH(setrand_mtl(coords,values)); | |
|       std::cout << "MTL\t" << timer.value() << "\n"; | |
|     } | |
|     #endif | |
|  | |
|   return 0; | |
| } | |
| 
 | |
| EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals) | |
| { | |
|   using namespace Eigen; | |
|   SparseMatrix<Scalar> mat(SIZE,SIZE); | |
|   //mat.startFill(2000000/*coords.size()*/); | |
|   for (int i=0; i<coords.size(); ++i) | |
|   { | |
|     mat.insert(coords[i].x(), coords[i].y()) = vals[i]; | |
|   } | |
|   mat.finalize(); | |
|   CHECK_MEM; | |
|   return 0; | |
| } | |
| 
 | |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals) | |
| { | |
|   using namespace Eigen; | |
|   DynamicSparseMatrix<Scalar> mat(SIZE,SIZE); | |
|   mat.reserve(coords.size()/10); | |
|   for (int i=0; i<coords.size(); ++i) | |
|   { | |
|     mat.coeffRef(coords[i].x(), coords[i].y()) += vals[i]; | |
|   } | |
|   mat.finalize(); | |
|   CHECK_MEM; | |
|   return &mat.coeffRef(coords[0].x(), coords[0].y()); | |
| } | |
| 
 | |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals) | |
| { | |
|   using namespace Eigen; | |
|   int n = coords.size()/KK; | |
|   DynamicSparseMatrix<Scalar> mat(SIZE,SIZE); | |
|   for (int j=0; j<KK; ++j) | |
|   { | |
|     DynamicSparseMatrix<Scalar> aux(SIZE,SIZE); | |
|     mat.reserve(n); | |
|     for (int i=j*n; i<(j+1)*n; ++i) | |
|     { | |
|       aux.insert(coords[i].x(), coords[i].y()) += vals[i]; | |
|     } | |
|     aux.finalize(); | |
|     mat += aux; | |
|   } | |
|   return &mat.coeffRef(coords[0].x(), coords[0].y()); | |
| } | |
| 
 | |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals) | |
| { | |
|   using namespace Eigen; | |
|   DynamicSparseMatrix<Scalar> setter(SIZE,SIZE); | |
|   setter.reserve(coords.size()/10); | |
|   for (int i=0; i<coords.size(); ++i) | |
|   { | |
|     setter.coeffRef(coords[i].x(), coords[i].y()) += vals[i]; | |
|   } | |
|   SparseMatrix<Scalar> mat = setter; | |
|   CHECK_MEM; | |
|   return &mat.coeffRef(coords[0].x(), coords[0].y()); | |
| } | |
| 
 | |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals) | |
| { | |
|   using namespace Eigen; | |
|   SparseMatrix<Scalar> mat(SIZE,SIZE); | |
|   { | |
|     RandomSetter<SparseMatrix<Scalar>, StdMapTraits > setter(mat); | |
|     for (int i=0; i<coords.size(); ++i) | |
|     { | |
|       setter(coords[i].x(), coords[i].y()) += vals[i]; | |
|     } | |
|     CHECK_MEM; | |
|   } | |
|   return &mat.coeffRef(coords[0].x(), coords[0].y()); | |
| } | |
| 
 | |
| #ifndef NOGOOGLE | |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals) | |
| { | |
|   using namespace Eigen; | |
|   SparseMatrix<Scalar> mat(SIZE,SIZE); | |
|   { | |
|     RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat); | |
|     for (int i=0; i<coords.size(); ++i) | |
|       setter(coords[i].x(), coords[i].y()) += vals[i]; | |
|     CHECK_MEM; | |
|   } | |
|   return &mat.coeffRef(coords[0].x(), coords[0].y()); | |
| } | |
| 
 | |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals) | |
| { | |
|   using namespace Eigen; | |
|   SparseMatrix<Scalar> mat(SIZE,SIZE); | |
|   { | |
|     RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat); | |
|     for (int i=0; i<coords.size(); ++i) | |
|       setter(coords[i].x(), coords[i].y()) += vals[i]; | |
|     CHECK_MEM; | |
|   } | |
|   return &mat.coeffRef(coords[0].x(), coords[0].y()); | |
| } | |
| #endif | |
|  | |
| 
 | |
| template <class T> | |
| void coo_tocsr(const int n_row, | |
|                const int n_col, | |
|                const int nnz, | |
|                const Coordinates Aij, | |
|                const Values Ax, | |
|                      int Bp[], | |
|                      int Bj[], | |
|                      T Bx[]) | |
| { | |
|     //compute number of non-zero entries per row of A coo_tocsr | |
|     std::fill(Bp, Bp + n_row, 0); | |
| 
 | |
|     for (int n = 0; n < nnz; n++){ | |
|         Bp[Aij[n].x()]++; | |
|     } | |
| 
 | |
|     //cumsum the nnz per row to get Bp[] | |
|     for(int i = 0, cumsum = 0; i < n_row; i++){ | |
|         int temp = Bp[i]; | |
|         Bp[i] = cumsum; | |
|         cumsum += temp; | |
|     } | |
|     Bp[n_row] = nnz; | |
| 
 | |
|     //write Aj,Ax into Bj,Bx | |
|     for(int n = 0; n < nnz; n++){ | |
|         int row  = Aij[n].x(); | |
|         int dest = Bp[row]; | |
| 
 | |
|         Bj[dest] = Aij[n].y(); | |
|         Bx[dest] = Ax[n]; | |
| 
 | |
|         Bp[row]++; | |
|     } | |
| 
 | |
|     for(int i = 0, last = 0; i <= n_row; i++){ | |
|         int temp = Bp[i]; | |
|         Bp[i]  = last; | |
|         last   = temp; | |
|     } | |
| 
 | |
|     //now Bp,Bj,Bx form a CSR representation (with possible duplicates) | |
| } | |
| 
 | |
| template< class T1, class T2 > | |
| bool kv_pair_less(const std::pair<T1,T2>& x, const std::pair<T1,T2>& y){ | |
|     return x.first < y.first; | |
| } | |
| 
 | |
| 
 | |
| template<class I, class T> | |
| void csr_sort_indices(const I n_row, | |
|                       const I Ap[], | |
|                             I Aj[], | |
|                             T Ax[]) | |
| { | |
|     std::vector< std::pair<I,T> > temp; | |
| 
 | |
|     for(I i = 0; i < n_row; i++){ | |
|         I row_start = Ap[i]; | |
|         I row_end   = Ap[i+1]; | |
| 
 | |
|         temp.clear(); | |
| 
 | |
|         for(I jj = row_start; jj < row_end; jj++){ | |
|             temp.push_back(std::make_pair(Aj[jj],Ax[jj])); | |
|         } | |
| 
 | |
|         std::sort(temp.begin(),temp.end(),kv_pair_less<I,T>); | |
| 
 | |
|         for(I jj = row_start, n = 0; jj < row_end; jj++, n++){ | |
|             Aj[jj] = temp[n].first; | |
|             Ax[jj] = temp[n].second; | |
|         } | |
|     } | |
| } | |
| 
 | |
| template <class I, class T> | |
| void csr_sum_duplicates(const I n_row, | |
|                         const I n_col, | |
|                               I Ap[], | |
|                               I Aj[], | |
|                               T Ax[]) | |
| { | |
|     I nnz = 0; | |
|     I row_end = 0; | |
|     for(I i = 0; i < n_row; i++){ | |
|         I jj = row_end; | |
|         row_end = Ap[i+1]; | |
|         while( jj < row_end ){ | |
|             I j = Aj[jj]; | |
|             T x = Ax[jj]; | |
|             jj++; | |
|             while( jj < row_end && Aj[jj] == j ){ | |
|                 x += Ax[jj]; | |
|                 jj++; | |
|             } | |
|             Aj[nnz] = j; | |
|             Ax[nnz] = x; | |
|             nnz++; | |
|         } | |
|         Ap[i+1] = nnz; | |
|     } | |
| } | |
| 
 | |
| EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals) | |
| { | |
|   using namespace Eigen; | |
|   SparseMatrix<Scalar> mat(SIZE,SIZE); | |
|   mat.resizeNonZeros(coords.size()); | |
| //   std::cerr << "setrand_scipy...\n"; | |
|   coo_tocsr<Scalar>(SIZE,SIZE, coords.size(), coords, vals, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr()); | |
| //   std::cerr << "coo_tocsr ok\n"; | |
|  | |
|   csr_sort_indices(SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr()); | |
| 
 | |
|   csr_sum_duplicates(SIZE, SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr()); | |
| 
 | |
|   mat.resizeNonZeros(mat._outerIndexPtr()[SIZE]); | |
| 
 | |
|   return &mat.coeffRef(coords[0].x(), coords[0].y()); | |
| } | |
| 
 | |
| 
 | |
| #ifndef NOUBLAS | |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals) | |
| { | |
|   using namespace boost; | |
|   using namespace boost::numeric; | |
|   using namespace boost::numeric::ublas; | |
|   mapped_matrix<Scalar> aux(SIZE,SIZE); | |
|   for (int i=0; i<coords.size(); ++i) | |
|   { | |
|     aux(coords[i].x(), coords[i].y()) += vals[i]; | |
|   } | |
|   CHECK_MEM; | |
|   compressed_matrix<Scalar> mat(aux); | |
|   return 0;// &mat(coords[0].x(), coords[0].y()); | |
| } | |
| /*EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals) | |
| { | |
|   using namespace boost; | |
|   using namespace boost::numeric; | |
|   using namespace boost::numeric::ublas; | |
|   coordinate_matrix<Scalar> aux(SIZE,SIZE); | |
|   for (int i=0; i<coords.size(); ++i) | |
|   { | |
|     aux(coords[i].x(), coords[i].y()) = vals[i]; | |
|   } | |
|   compressed_matrix<Scalar> mat(aux); | |
|   return 0;//&mat(coords[0].x(), coords[0].y()); | |
| } | |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals) | |
| { | |
|   using namespace boost; | |
|   using namespace boost::numeric; | |
|   using namespace boost::numeric::ublas; | |
|   compressed_matrix<Scalar> mat(SIZE,SIZE); | |
|   for (int i=0; i<coords.size(); ++i) | |
|   { | |
|     mat(coords[i].x(), coords[i].y()) = vals[i]; | |
|   } | |
|   return 0;//&mat(coords[0].x(), coords[0].y()); | |
| }*/ | |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals) | |
| { | |
|   using namespace boost; | |
|   using namespace boost::numeric; | |
|   using namespace boost::numeric::ublas; | |
| 
 | |
| //   ublas::vector<coordinate_vector<Scalar> > foo; | |
|   generalized_vector_of_vector<Scalar, row_major, ublas::vector<coordinate_vector<Scalar> > > aux(SIZE,SIZE); | |
|   for (int i=0; i<coords.size(); ++i) | |
|   { | |
|     aux(coords[i].x(), coords[i].y()) += vals[i]; | |
|   } | |
|   CHECK_MEM; | |
|   compressed_matrix<Scalar,row_major> mat(aux); | |
|   return 0;//&mat(coords[0].x(), coords[0].y()); | |
| } | |
| #endif | |
|  | |
| #ifndef NOMTL | |
| EIGEN_DONT_INLINE void setrand_mtl(const Coordinates& coords, const Values& vals); | |
| #endif | |
| 
 |