You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							158 lines
						
					
					
						
							5.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							158 lines
						
					
					
						
							5.6 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. Eigen itself is part of the KDE project. | |
| // | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
|  | |
| template<typename MatrixType> void triangular(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | |
| 
 | |
|   RealScalar largerEps = 10*test_precision<RealScalar>(); | |
| 
 | |
|   int rows = m.rows(); | |
|   int cols = m.cols(); | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), | |
|              m2 = MatrixType::Random(rows, cols), | |
|              m3(rows, cols), | |
|              m4(rows, cols), | |
|              r1(rows, cols), | |
|              r2(rows, cols), | |
|              mzero = MatrixType::Zero(rows, cols), | |
|              mones = MatrixType::Ones(rows, cols), | |
|              identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | |
|                               ::Identity(rows, rows), | |
|              square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | |
|                               ::Random(rows, rows); | |
|   VectorType v1 = VectorType::Random(rows), | |
|              v2 = VectorType::Random(rows), | |
|              vzero = VectorType::Zero(rows); | |
| 
 | |
|   MatrixType m1up = m1.template part<Eigen::UpperTriangular>(); | |
|   MatrixType m2up = m2.template part<Eigen::UpperTriangular>(); | |
| 
 | |
|   if (rows*cols>1) | |
|   { | |
|     VERIFY(m1up.isUpperTriangular()); | |
|     VERIFY(m2up.transpose().isLowerTriangular()); | |
|     VERIFY(!m2.isLowerTriangular()); | |
|   } | |
| 
 | |
| //   VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2); | |
|  | |
|   // test overloaded operator+= | |
|   r1.setZero(); | |
|   r2.setZero(); | |
|   r1.template part<Eigen::UpperTriangular>() +=  m1; | |
|   r2 += m1up; | |
|   VERIFY_IS_APPROX(r1,r2); | |
| 
 | |
|   // test overloaded operator= | |
|   m1.setZero(); | |
|   m1.template part<Eigen::UpperTriangular>() = (m2.transpose() * m2).lazy(); | |
|   m3 = m2.transpose() * m2; | |
|   VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>().transpose(), m1); | |
| 
 | |
|   // test overloaded operator= | |
|   m1.setZero(); | |
|   m1.template part<Eigen::LowerTriangular>() = (m2.transpose() * m2).lazy(); | |
|   VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>(), m1); | |
| 
 | |
|   VERIFY_IS_APPROX(m3.template part<Diagonal>(), m3.diagonal().asDiagonal()); | |
| 
 | |
|   m1 = MatrixType::Random(rows, cols); | |
|   for (int i=0; i<rows; ++i) | |
|     while (ei_abs2(m1(i,i))<1e-3) m1(i,i) = ei_random<Scalar>(); | |
| 
 | |
|   Transpose<MatrixType> trm4(m4); | |
|   // test back and forward subsitution | |
|   m3 = m1.template part<Eigen::LowerTriangular>(); | |
|   VERIFY(m3.template marked<Eigen::LowerTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>())); | |
|   VERIFY(m3.transpose().template marked<Eigen::UpperTriangular>() | |
|     .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>())); | |
|   // check M * inv(L) using in place API | |
|   m4 = m3; | |
|   m3.transpose().template marked<Eigen::UpperTriangular>().solveTriangularInPlace(trm4); | |
|   VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>())); | |
| 
 | |
|   m3 = m1.template part<Eigen::UpperTriangular>(); | |
|   VERIFY(m3.template marked<Eigen::UpperTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>())); | |
|   VERIFY(m3.transpose().template marked<Eigen::LowerTriangular>() | |
|     .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>())); | |
|   // check M * inv(U) using in place API | |
|   m4 = m3; | |
|   m3.transpose().template marked<Eigen::LowerTriangular>().solveTriangularInPlace(trm4); | |
|   VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>())); | |
| 
 | |
|   m3 = m1.template part<Eigen::UpperTriangular>(); | |
|   VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::UpperTriangular>().solveTriangular(m2)), largerEps)); | |
|   m3 = m1.template part<Eigen::LowerTriangular>(); | |
|   VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::LowerTriangular>().solveTriangular(m2)), largerEps)); | |
| 
 | |
|   VERIFY((m1.template part<Eigen::UpperTriangular>() * m2.template part<Eigen::UpperTriangular>()).isUpperTriangular()); | |
| 
 | |
|   // test swap | |
|   m1.setOnes(); | |
|   m2.setZero(); | |
|   m2.template part<Eigen::UpperTriangular>().swap(m1); | |
|   m3.setZero(); | |
|   m3.template part<Eigen::UpperTriangular>().setOnes(); | |
|   VERIFY_IS_APPROX(m2,m3); | |
| 
 | |
| } | |
| 
 | |
| void selfadjoint() | |
| { | |
|   Matrix2i m; | |
|   m << 1, 2, | |
|        3, 4; | |
| 
 | |
|   Matrix2i m1 = Matrix2i::Zero(); | |
|   m1.part<SelfAdjoint>() = m; | |
|   Matrix2i ref1; | |
|   ref1 << 1, 2, | |
|           2, 4; | |
|   VERIFY(m1 == ref1); | |
|    | |
|   Matrix2i m2 = Matrix2i::Zero(); | |
|   m2.part<SelfAdjoint>() = m.part<UpperTriangular>(); | |
|   Matrix2i ref2; | |
|   ref2 << 1, 2, | |
|           2, 4; | |
|   VERIFY(m2 == ref2); | |
|   | |
|   Matrix2i m3 = Matrix2i::Zero(); | |
|   m3.part<SelfAdjoint>() = m.part<LowerTriangular>(); | |
|   Matrix2i ref3; | |
|   ref3 << 1, 0, | |
|           0, 4; | |
|   VERIFY(m3 == ref3); | |
|    | |
|   // example inspired from bug 159 | |
|   int array[] = {1, 2, 3, 4}; | |
|   Matrix2i::Map(array).part<SelfAdjoint>() = Matrix2i::Random().part<LowerTriangular>(); | |
|    | |
|   std::cout << "hello\n" << array << std::endl; | |
| } | |
| 
 | |
| void test_eigen2_triangular() | |
| { | |
|   CALL_SUBTEST_8( selfadjoint() ); | |
|   for(int i = 0; i < g_repeat ; i++) { | |
|     CALL_SUBTEST_1( triangular(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( triangular(Matrix<float, 2, 2>()) ); | |
|     CALL_SUBTEST_3( triangular(Matrix3d()) ); | |
|     CALL_SUBTEST_4( triangular(MatrixXcf(4, 4)) ); | |
|     CALL_SUBTEST_5( triangular(Matrix<std::complex<float>,8, 8>()) ); | |
|     CALL_SUBTEST_6( triangular(MatrixXd(17,17)) ); | |
|     CALL_SUBTEST_7( triangular(Matrix<float,Dynamic,Dynamic,RowMajor>(5, 5)) ); | |
|   } | |
| }
 |