You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1331 lines
						
					
					
						
							40 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							1331 lines
						
					
					
						
							40 KiB
						
					
					
				| /**CFile*********************************************************************** | |
|  | |
|   FileName    [cuddSubsetHB.c] | |
|  | |
|   PackageName [cudd] | |
|  | |
|   Synopsis    [Procedure to subset the given BDD by choosing the heavier | |
| 	       branches.] | |
|  | |
|  | |
|   Description [External procedures provided by this module: | |
| 		<ul> | |
| 		<li> Cudd_SubsetHeavyBranch() | |
| 		<li> Cudd_SupersetHeavyBranch() | |
| 		</ul> | |
| 	       Internal procedures included in this module: | |
| 		<ul> | |
| 		<li> cuddSubsetHeavyBranch() | |
| 		</ul> | |
| 	       Static procedures included in this module: | |
| 		<ul> | |
| 		<li> ResizeCountMintermPages(); | |
| 		<li> ResizeNodeDataPages() | |
| 		<li> ResizeCountNodePages() | |
| 		<li> SubsetCountMintermAux() | |
| 		<li> SubsetCountMinterm() | |
| 		<li> SubsetCountNodesAux() | |
| 		<li> SubsetCountNodes() | |
| 		<li> BuildSubsetBdd() | |
| 		</ul> | |
| 		] | |
|  | |
|   SeeAlso     [cuddSubsetSP.c] | |
|  | |
|   Author      [Kavita Ravi] | |
|  | |
|   Copyright   [Copyright (c) 1995-2012, Regents of the University of Colorado | |
|  | |
|   All rights reserved. | |
|  | |
|   Redistribution and use in source and binary forms, with or without | |
|   modification, are permitted provided that the following conditions | |
|   are met: | |
|  | |
|   Redistributions of source code must retain the above copyright | |
|   notice, this list of conditions and the following disclaimer. | |
|  | |
|   Redistributions in binary form must reproduce the above copyright | |
|   notice, this list of conditions and the following disclaimer in the | |
|   documentation and/or other materials provided with the distribution. | |
|  | |
|   Neither the name of the University of Colorado nor the names of its | |
|   contributors may be used to endorse or promote products derived from | |
|   this software without specific prior written permission. | |
|  | |
|   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
|   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
|   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
|   FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |
|   COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |
|   INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | |
|   BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
|   LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
|   CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
|   LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | |
|   ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
|   POSSIBILITY OF SUCH DAMAGE.] | |
|  | |
| ******************************************************************************/ | |
| 
 | |
| #ifdef __STDC__ | |
| #include <float.h> | |
| #else | |
| #define DBL_MAX_EXP 1024 | |
| #endif | |
| #include "util.h" | |
| #include "cuddInt.h" | |
|  | |
| /*---------------------------------------------------------------------------*/ | |
| /* Constant declarations                                                     */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| #define	DEFAULT_PAGE_SIZE 2048 | |
| #define	DEFAULT_NODE_DATA_PAGE_SIZE 1024 | |
| #define INITIAL_PAGES 128 | |
|  | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Stucture declarations                                                     */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| /* data structure to store the information on each node. It keeps | |
|  * the number of minterms represented by the DAG rooted at this node | |
|  * in terms of the number of variables specified by the user, number | |
|  * of nodes in this DAG and the number of nodes of its child with | |
|  * lesser number of minterms that are not shared by the child with | |
|  * more minterms | |
|  */ | |
| struct NodeData { | |
|     double *mintermPointer; | |
|     int *nodesPointer; | |
|     int *lightChildNodesPointer; | |
| }; | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Type declarations                                                         */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| typedef struct NodeData NodeData_t; | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Variable declarations                                                     */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| #ifndef lint | |
| static char rcsid[] DD_UNUSED = "$Id: cuddSubsetHB.c,v 1.39 2012/02/05 01:07:19 fabio Exp $"; | |
| #endif | |
|  | |
| static int memOut; | |
| #ifdef DEBUG | |
| static	int		num_calls; | |
| #endif | |
|  | |
| static	DdNode	        *zero, *one; /* constant functions */ | |
| static	double		**mintermPages;	/* pointers to the pages */ | |
| static	int		**nodePages; /* pointers to the pages */ | |
| static	int		**lightNodePages; /* pointers to the pages */ | |
| static	double		*currentMintermPage; /* pointer to the current | |
| 						   page */ | |
| static  double		max; /* to store the 2^n value of the number | |
| 			      * of variables */ | |
| 
 | |
| static	int		*currentNodePage; /* pointer to the current | |
| 						   page */ | |
| static	int		*currentLightNodePage; /* pointer to the | |
| 						*  current page */ | |
| static	int		pageIndex; /* index to next element */ | |
| static	int		page; /* index to current page */ | |
| static	int		pageSize = DEFAULT_PAGE_SIZE; /* page size */ | |
| static  int             maxPages; /* number of page pointers */ | |
| 
 | |
| static	NodeData_t	*currentNodeDataPage; /* pointer to the current | |
| 						 page */ | |
| static	int		nodeDataPage; /* index to next element */ | |
| static	int		nodeDataPageIndex; /* index to next element */ | |
| static	NodeData_t	**nodeDataPages; /* index to current page */ | |
| static	int		nodeDataPageSize = DEFAULT_NODE_DATA_PAGE_SIZE; | |
| 						     /* page size */ | |
| static  int             maxNodeDataPages; /* number of page pointers */ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Macro declarations                                                        */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| /**AutomaticStart*************************************************************/ | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Static function prototypes                                                */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| static void ResizeNodeDataPages (void); | |
| static void ResizeCountMintermPages (void); | |
| static void ResizeCountNodePages (void); | |
| static double SubsetCountMintermAux (DdNode *node, double max, st_table *table); | |
| static st_table * SubsetCountMinterm (DdNode *node, int nvars); | |
| static int SubsetCountNodesAux (DdNode *node, st_table *table, double max); | |
| static int SubsetCountNodes (DdNode *node, st_table *table, int nvars); | |
| static void StoreNodes (st_table *storeTable, DdManager *dd, DdNode *node); | |
| static DdNode * BuildSubsetBdd (DdManager *dd, DdNode *node, int *size, st_table *visitedTable, int threshold, st_table *storeTable, st_table *approxTable); | |
| 
 | |
| /**AutomaticEnd***************************************************************/ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Definition of exported functions                                          */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Extracts a dense subset from a BDD with the heavy branch | |
|   heuristic.] | |
|  | |
|   Description [Extracts a dense subset from a BDD. This procedure | |
|   builds a subset by throwing away one of the children of each node, | |
|   starting from the root, until the result is small enough. The child | |
|   that is eliminated from the result is the one that contributes the | |
|   fewer minterms.  Returns a pointer to the BDD of the subset if | |
|   successful. NULL if the procedure runs out of memory. The parameter | |
|   numVars is the maximum number of variables to be used in minterm | |
|   calculation and node count calculation.  The optimal number should | |
|   be as close as possible to the size of the support of f.  However, | |
|   it is safe to pass the value returned by Cudd_ReadSize for numVars | |
|   when the number of variables is under 1023.  If numVars is larger | |
|   than 1023, it will overflow. If a 0 parameter is passed then the | |
|   procedure will compute a value which will avoid overflow but will | |
|   cause underflow with 2046 variables or more.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [Cudd_SubsetShortPaths Cudd_SupersetHeavyBranch Cudd_ReadSize] | |
|  | |
| ******************************************************************************/ | |
| DdNode * | |
| Cudd_SubsetHeavyBranch( | |
|   DdManager * dd /* manager */, | |
|   DdNode * f /* function to be subset */, | |
|   int  numVars /* number of variables in the support of f */, | |
|   int  threshold /* maximum number of nodes in the subset */) | |
| { | |
|     DdNode *subset; | |
| 
 | |
|     memOut = 0; | |
|     do { | |
| 	dd->reordered = 0; | |
| 	subset = cuddSubsetHeavyBranch(dd, f, numVars, threshold); | |
|     } while ((dd->reordered == 1) && (!memOut)); | |
| 
 | |
|     return(subset); | |
| 
 | |
| } /* end of Cudd_SubsetHeavyBranch */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Extracts a dense superset from a BDD with the heavy branch | |
|   heuristic.] | |
|  | |
|   Description [Extracts a dense superset from a BDD. The procedure is | |
|   identical to the subset procedure except for the fact that it | |
|   receives the complement of the given function. Extracting the subset | |
|   of the complement function is equivalent to extracting the superset | |
|   of the function. This procedure builds a superset by throwing away | |
|   one of the children of each node starting from the root of the | |
|   complement function, until the result is small enough. The child | |
|   that is eliminated from the result is the one that contributes the | |
|   fewer minterms. | |
|   Returns a pointer to the BDD of the superset if successful. NULL if | |
|   intermediate result causes the procedure to run out of memory. The | |
|   parameter numVars is the maximum number of variables to be used in | |
|   minterm calculation and node count calculation.  The optimal number | |
|   should be as close as possible to the size of the support of f. | |
|   However, it is safe to pass the value returned by Cudd_ReadSize for | |
|   numVars when the number of variables is under 1023.  If numVars is | |
|   larger than 1023, it will overflow. If a 0 parameter is passed then | |
|   the procedure will compute a value which will avoid overflow but | |
|   will cause underflow with 2046 variables or more.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [Cudd_SubsetHeavyBranch Cudd_SupersetShortPaths Cudd_ReadSize] | |
|  | |
| ******************************************************************************/ | |
| DdNode * | |
| Cudd_SupersetHeavyBranch( | |
|   DdManager * dd /* manager */, | |
|   DdNode * f /* function to be superset */, | |
|   int  numVars /* number of variables in the support of f */, | |
|   int  threshold /* maximum number of nodes in the superset */) | |
| { | |
|     DdNode *subset, *g; | |
| 
 | |
|     g = Cudd_Not(f); | |
|     memOut = 0; | |
|     do { | |
| 	dd->reordered = 0; | |
| 	subset = cuddSubsetHeavyBranch(dd, g, numVars, threshold); | |
|     } while ((dd->reordered == 1) && (!memOut)); | |
| 
 | |
|     return(Cudd_NotCond(subset, (subset != NULL))); | |
| 
 | |
| } /* end of Cudd_SupersetHeavyBranch */ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Definition of internal functions                                          */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [The main procedure that returns a subset by choosing the heavier | |
|   branch in the BDD.] | |
|  | |
|   Description [Here a subset BDD is built by throwing away one of the | |
|   children. Starting at root, annotate each node with the number of | |
|   minterms (in terms of the total number of variables specified - | |
|   numVars), number of nodes taken by the DAG rooted at this node and | |
|   number of additional nodes taken by the child that has the lesser | |
|   minterms. The child with the lower number of minterms is thrown away | |
|   and a dyanmic count of the nodes of the subset is kept. Once the | |
|   threshold is reached the subset is returned to the calling | |
|   procedure.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [Cudd_SubsetHeavyBranch] | |
|  | |
| ******************************************************************************/ | |
| DdNode * | |
| cuddSubsetHeavyBranch( | |
|   DdManager * dd /* DD manager */, | |
|   DdNode * f /* current DD */, | |
|   int  numVars /* maximum number of variables */, | |
|   int  threshold /* threshold size for the subset */) | |
| { | |
| 
 | |
|     int i, *size; | |
|     st_table *visitedTable; | |
|     int numNodes; | |
|     NodeData_t *currNodeQual; | |
|     DdNode *subset; | |
|     st_table *storeTable, *approxTable; | |
|     DdNode *key, *value; | |
|     st_generator *stGen; | |
| 
 | |
|     if (f == NULL) { | |
| 	fprintf(dd->err, "Cannot subset, nil object\n"); | |
| 	dd->errorCode = CUDD_INVALID_ARG; | |
| 	return(NULL); | |
|     } | |
| 
 | |
|     one	 = Cudd_ReadOne(dd); | |
|     zero = Cudd_Not(one); | |
| 
 | |
|     /* If user does not know numVars value, set it to the maximum | |
|      * exponent that the pow function can take. The -1 is due to the | |
|      * discrepancy in the value that pow takes and the value that | |
|      * log gives. | |
|      */ | |
|     if (numVars == 0) { | |
| 	/* set default value */ | |
| 	numVars = DBL_MAX_EXP - 1; | |
|     } | |
| 
 | |
|     if (Cudd_IsConstant(f)) { | |
| 	return(f); | |
|     } | |
| 
 | |
|     max = pow(2.0, (double)numVars); | |
| 
 | |
|     /* Create visited table where structures for node data are allocated and | |
|        stored in a st_table */ | |
|     visitedTable = SubsetCountMinterm(f, numVars); | |
|     if ((visitedTable == NULL) || memOut) { | |
| 	(void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); | |
| 	dd->errorCode = CUDD_MEMORY_OUT; | |
| 	return(0); | |
|     } | |
|     numNodes = SubsetCountNodes(f, visitedTable, numVars); | |
|     if (memOut) { | |
| 	(void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); | |
| 	dd->errorCode = CUDD_MEMORY_OUT; | |
| 	return(0); | |
|     } | |
| 
 | |
|     if (st_lookup(visitedTable, f, &currNodeQual) == 0) { | |
| 	fprintf(dd->err, | |
| 		"Something is wrong, ought to be node quality table\n"); | |
| 	dd->errorCode = CUDD_INTERNAL_ERROR; | |
|     } | |
| 
 | |
|     size = ALLOC(int, 1); | |
|     if (size == NULL) { | |
| 	dd->errorCode = CUDD_MEMORY_OUT; | |
| 	return(NULL); | |
|     } | |
|     *size = numNodes; | |
| 
 | |
| #ifdef DEBUG | |
|     num_calls = 0; | |
| #endif | |
|     /* table to store nodes being created. */ | |
|     storeTable = st_init_table(st_ptrcmp, st_ptrhash); | |
|     /* insert the constant */ | |
|     cuddRef(one); | |
|     if (st_insert(storeTable, Cudd_ReadOne(dd), NULL) == | |
| 	ST_OUT_OF_MEM) { | |
| 	fprintf(dd->out, "Something wrong, st_table insert failed\n"); | |
|     } | |
|     /* table to store approximations of nodes */ | |
|     approxTable = st_init_table(st_ptrcmp, st_ptrhash); | |
|     subset = (DdNode *)BuildSubsetBdd(dd, f, size, visitedTable, threshold, | |
| 				      storeTable, approxTable); | |
|     if (subset != NULL) { | |
| 	cuddRef(subset); | |
|     } | |
| 
 | |
|     stGen = st_init_gen(approxTable); | |
|     if (stGen == NULL) { | |
| 	st_free_table(approxTable); | |
| 	return(NULL); | |
|     } | |
|     while(st_gen(stGen, &key, &value)) { | |
| 	Cudd_RecursiveDeref(dd, value); | |
|     } | |
|     st_free_gen(stGen); stGen = NULL; | |
|     st_free_table(approxTable); | |
| 
 | |
|     stGen = st_init_gen(storeTable); | |
|     if (stGen == NULL) { | |
| 	st_free_table(storeTable); | |
| 	return(NULL); | |
|     } | |
|     while(st_gen(stGen, &key, &value)) { | |
| 	Cudd_RecursiveDeref(dd, key); | |
|     } | |
|     st_free_gen(stGen); stGen = NULL; | |
|     st_free_table(storeTable); | |
| 
 | |
|     for (i = 0; i <= page; i++) { | |
| 	FREE(mintermPages[i]); | |
|     } | |
|     FREE(mintermPages); | |
|     for (i = 0; i <= page; i++) { | |
| 	FREE(nodePages[i]); | |
|     } | |
|     FREE(nodePages); | |
|     for (i = 0; i <= page; i++) { | |
| 	FREE(lightNodePages[i]); | |
|     } | |
|     FREE(lightNodePages); | |
|     for (i = 0; i <= nodeDataPage; i++) { | |
| 	FREE(nodeDataPages[i]); | |
|     } | |
|     FREE(nodeDataPages); | |
|     st_free_table(visitedTable); | |
|     FREE(size); | |
| #if 0 | |
|     (void) Cudd_DebugCheck(dd); | |
|     (void) Cudd_CheckKeys(dd); | |
| #endif | |
|  | |
|     if (subset != NULL) { | |
| #ifdef DD_DEBUG | |
|       if (!Cudd_bddLeq(dd, subset, f)) { | |
| 	    fprintf(dd->err, "Wrong subset\n"); | |
| 	    dd->errorCode = CUDD_INTERNAL_ERROR; | |
| 	    return(NULL); | |
|       } | |
| #endif | |
| 	cuddDeref(subset); | |
| 	return(subset); | |
|     } else { | |
| 	return(NULL); | |
|     } | |
| } /* end of cuddSubsetHeavyBranch */ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Definition of static functions                                            */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Resize the number of pages allocated to store the node data.] | |
|  | |
|   Description [Resize the number of pages allocated to store the node data | |
|   The procedure  moves the counter to the next page when the end of | |
|   the page is reached and allocates new pages when necessary.] | |
|  | |
|   SideEffects [Changes the size of pages, page, page index, maximum | |
|   number of pages freeing stuff in case of memory out. ] | |
|  | |
|   SeeAlso     [] | |
|  | |
| ******************************************************************************/ | |
| static void | |
| ResizeNodeDataPages(void) | |
| { | |
|     int i; | |
|     NodeData_t **newNodeDataPages; | |
| 
 | |
|     nodeDataPage++; | |
|     /* If the current page index is larger than the number of pages | |
|      * allocated, allocate a new page array. Page numbers are incremented by | |
|      * INITIAL_PAGES | |
|      */ | |
|     if (nodeDataPage == maxNodeDataPages) { | |
| 	newNodeDataPages = ALLOC(NodeData_t *,maxNodeDataPages + INITIAL_PAGES); | |
| 	if (newNodeDataPages == NULL) { | |
| 	    for (i = 0; i < nodeDataPage; i++) FREE(nodeDataPages[i]); | |
| 	    FREE(nodeDataPages); | |
| 	    memOut = 1; | |
| 	    return; | |
| 	} else { | |
| 	    for (i = 0; i < maxNodeDataPages; i++) { | |
| 		newNodeDataPages[i] = nodeDataPages[i]; | |
| 	    } | |
| 	    /* Increase total page count */ | |
| 	    maxNodeDataPages += INITIAL_PAGES; | |
| 	    FREE(nodeDataPages); | |
| 	    nodeDataPages = newNodeDataPages; | |
| 	} | |
|     } | |
|     /* Allocate a new page */ | |
|     currentNodeDataPage = nodeDataPages[nodeDataPage] = | |
| 	ALLOC(NodeData_t ,nodeDataPageSize); | |
|     if (currentNodeDataPage == NULL) { | |
| 	for (i = 0; i < nodeDataPage; i++) FREE(nodeDataPages[i]); | |
| 	FREE(nodeDataPages); | |
| 	memOut = 1; | |
| 	return; | |
|     } | |
|     /* reset page index */ | |
|     nodeDataPageIndex = 0; | |
|     return; | |
| 
 | |
| } /* end of ResizeNodeDataPages */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Resize the number of pages allocated to store the minterm | |
|   counts. ] | |
|  | |
|   Description [Resize the number of pages allocated to store the minterm | |
|   counts.  The procedure  moves the counter to the next page when the | |
|   end of the page is reached and allocates new pages when necessary.] | |
|  | |
|   SideEffects [Changes the size of minterm pages, page, page index, maximum | |
|   number of pages freeing stuff in case of memory out. ] | |
|  | |
|   SeeAlso     [] | |
|  | |
| ******************************************************************************/ | |
| static void | |
| ResizeCountMintermPages(void) | |
| { | |
|     int i; | |
|     double **newMintermPages; | |
| 
 | |
|     page++; | |
|     /* If the current page index is larger than the number of pages | |
|      * allocated, allocate a new page array. Page numbers are incremented by | |
|      * INITIAL_PAGES | |
|      */ | |
|     if (page == maxPages) { | |
| 	newMintermPages = ALLOC(double *,maxPages + INITIAL_PAGES); | |
| 	if (newMintermPages == NULL) { | |
| 	    for (i = 0; i < page; i++) FREE(mintermPages[i]); | |
| 	    FREE(mintermPages); | |
| 	    memOut = 1; | |
| 	    return; | |
| 	} else { | |
| 	    for (i = 0; i < maxPages; i++) { | |
| 		newMintermPages[i] = mintermPages[i]; | |
| 	    } | |
| 	    /* Increase total page count */ | |
| 	    maxPages += INITIAL_PAGES; | |
| 	    FREE(mintermPages); | |
| 	    mintermPages = newMintermPages; | |
| 	} | |
|     } | |
|     /* Allocate a new page */ | |
|     currentMintermPage = mintermPages[page] = ALLOC(double,pageSize); | |
|     if (currentMintermPage == NULL) { | |
| 	for (i = 0; i < page; i++) FREE(mintermPages[i]); | |
| 	FREE(mintermPages); | |
| 	memOut = 1; | |
| 	return; | |
|     } | |
|     /* reset page index */ | |
|     pageIndex = 0; | |
|     return; | |
| 
 | |
| } /* end of ResizeCountMintermPages */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Resize the number of pages allocated to store the node counts.] | |
|  | |
|   Description [Resize the number of pages allocated to store the node counts. | |
|   The procedure  moves the counter to the next page when the end of | |
|   the page is reached and allocates new pages when necessary.] | |
|  | |
|   SideEffects [Changes the size of pages, page, page index, maximum | |
|   number of pages freeing stuff in case of memory out.] | |
|  | |
|   SeeAlso     [] | |
|  | |
| ******************************************************************************/ | |
| static void | |
| ResizeCountNodePages(void) | |
| { | |
|     int i; | |
|     int **newNodePages; | |
| 
 | |
|     page++; | |
| 
 | |
|     /* If the current page index is larger than the number of pages | |
|      * allocated, allocate a new page array. The number of pages is incremented | |
|      * by INITIAL_PAGES. | |
|      */ | |
|     if (page == maxPages) { | |
| 	newNodePages = ALLOC(int *,maxPages + INITIAL_PAGES); | |
| 	if (newNodePages == NULL) { | |
| 	    for (i = 0; i < page; i++) FREE(nodePages[i]); | |
| 	    FREE(nodePages); | |
| 	    for (i = 0; i < page; i++) FREE(lightNodePages[i]); | |
| 	    FREE(lightNodePages); | |
| 	    memOut = 1; | |
| 	    return; | |
| 	} else { | |
| 	    for (i = 0; i < maxPages; i++) { | |
| 		newNodePages[i] = nodePages[i]; | |
| 	    } | |
| 	    FREE(nodePages); | |
| 	    nodePages = newNodePages; | |
| 	} | |
| 
 | |
| 	newNodePages = ALLOC(int *,maxPages + INITIAL_PAGES); | |
| 	if (newNodePages == NULL) { | |
| 	    for (i = 0; i < page; i++) FREE(nodePages[i]); | |
| 	    FREE(nodePages); | |
| 	    for (i = 0; i < page; i++) FREE(lightNodePages[i]); | |
| 	    FREE(lightNodePages); | |
| 	    memOut = 1; | |
| 	    return; | |
| 	} else { | |
| 	    for (i = 0; i < maxPages; i++) { | |
| 		newNodePages[i] = lightNodePages[i]; | |
| 	    } | |
| 	    FREE(lightNodePages); | |
| 	    lightNodePages = newNodePages; | |
| 	} | |
| 	/* Increase total page count */ | |
| 	maxPages += INITIAL_PAGES; | |
|     } | |
|     /* Allocate a new page */ | |
|     currentNodePage = nodePages[page] = ALLOC(int,pageSize); | |
|     if (currentNodePage == NULL) { | |
| 	for (i = 0; i < page; i++) FREE(nodePages[i]); | |
| 	FREE(nodePages); | |
| 	for (i = 0; i < page; i++) FREE(lightNodePages[i]); | |
| 	FREE(lightNodePages); | |
| 	memOut = 1; | |
| 	return; | |
|     } | |
|     /* Allocate a new page */ | |
|     currentLightNodePage = lightNodePages[page] = ALLOC(int,pageSize); | |
|     if (currentLightNodePage == NULL) { | |
| 	for (i = 0; i <= page; i++) FREE(nodePages[i]); | |
| 	FREE(nodePages); | |
| 	for (i = 0; i < page; i++) FREE(lightNodePages[i]); | |
| 	FREE(lightNodePages); | |
| 	memOut = 1; | |
| 	return; | |
|     } | |
|     /* reset page index */ | |
|     pageIndex = 0; | |
|     return; | |
| 
 | |
| } /* end of ResizeCountNodePages */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Recursively counts minterms of each node in the DAG.] | |
|  | |
|   Description [Recursively counts minterms of each node in the DAG. | |
|   Similar to the cuddCountMintermAux which recursively counts the | |
|   number of minterms for the dag rooted at each node in terms of the | |
|   total number of variables (max). This procedure creates the node | |
|   data structure and stores the minterm count as part of the node | |
|   data structure. ] | |
|  | |
|   SideEffects [Creates structures of type node quality and fills the st_table] | |
|  | |
|   SeeAlso     [SubsetCountMinterm] | |
|  | |
| ******************************************************************************/ | |
| static double | |
| SubsetCountMintermAux( | |
|   DdNode * node /* function to analyze */, | |
|   double  max /* number of minterms of constant 1 */, | |
|   st_table * table /* visitedTable table */) | |
| { | |
| 
 | |
|     DdNode	*N,*Nv,*Nnv; /* nodes to store cofactors  */ | |
|     double	min,*pmin; /* minterm count */ | |
|     double	min1, min2; /* minterm count */ | |
|     NodeData_t *dummy; | |
|     NodeData_t *newEntry; | |
|     int i; | |
| 
 | |
| #ifdef DEBUG | |
|     num_calls++; | |
| #endif | |
|  | |
|     /* Constant case */ | |
|     if (Cudd_IsConstant(node)) { | |
| 	if (node == zero) { | |
| 	    return(0.0); | |
| 	} else { | |
| 	    return(max); | |
| 	} | |
|     } else { | |
| 
 | |
| 	/* check if entry for this node exists */ | |
| 	if (st_lookup(table, node, &dummy)) { | |
| 	    min = *(dummy->mintermPointer); | |
| 	    return(min); | |
| 	} | |
| 
 | |
| 	/* Make the node regular to extract cofactors */ | |
| 	N = Cudd_Regular(node); | |
| 
 | |
| 	/* store the cofactors */ | |
| 	Nv = Cudd_T(N); | |
| 	Nnv = Cudd_E(N); | |
| 
 | |
| 	Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); | |
| 	Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); | |
| 
 | |
| 	min1 =  SubsetCountMintermAux(Nv, max,table)/2.0; | |
| 	if (memOut) return(0.0); | |
| 	min2 =  SubsetCountMintermAux(Nnv,max,table)/2.0; | |
| 	if (memOut) return(0.0); | |
| 	min = (min1+min2); | |
| 
 | |
| 	/* if page index is at the bottom, then create a new page */ | |
| 	if (pageIndex == pageSize) ResizeCountMintermPages(); | |
| 	if (memOut) { | |
| 	    for (i = 0; i <= nodeDataPage; i++) FREE(nodeDataPages[i]); | |
| 	    FREE(nodeDataPages); | |
| 	    st_free_table(table); | |
| 	    return(0.0); | |
| 	} | |
| 
 | |
| 	/* point to the correct location in the page */ | |
| 	pmin = currentMintermPage+pageIndex; | |
| 	pageIndex++; | |
| 
 | |
| 	/* store the minterm count of this node in the page */ | |
| 	*pmin = min; | |
| 
 | |
| 	/* Note I allocate the struct here. Freeing taken care of later */ | |
| 	if (nodeDataPageIndex == nodeDataPageSize) ResizeNodeDataPages(); | |
| 	if (memOut) { | |
| 	    for (i = 0; i <= page; i++) FREE(mintermPages[i]); | |
| 	    FREE(mintermPages); | |
| 	    st_free_table(table); | |
| 	    return(0.0); | |
| 	} | |
| 
 | |
| 	newEntry = currentNodeDataPage + nodeDataPageIndex; | |
| 	nodeDataPageIndex++; | |
| 
 | |
| 	/* points to the correct location in the page */ | |
| 	newEntry->mintermPointer = pmin; | |
| 	/* initialize this field of the Node Quality structure */ | |
| 	newEntry->nodesPointer = NULL; | |
| 
 | |
| 	/* insert entry for the node in the table */ | |
| 	if (st_insert(table,node, newEntry) == ST_OUT_OF_MEM) { | |
| 	    memOut = 1; | |
| 	    for (i = 0; i <= page; i++) FREE(mintermPages[i]); | |
| 	    FREE(mintermPages); | |
| 	    for (i = 0; i <= nodeDataPage; i++) FREE(nodeDataPages[i]); | |
| 	    FREE(nodeDataPages); | |
| 	    st_free_table(table); | |
| 	    return(0.0); | |
| 	} | |
| 	return(min); | |
|     } | |
| 
 | |
| } /* end of SubsetCountMintermAux */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Counts minterms of each node in the DAG] | |
|  | |
|   Description [Counts minterms of each node in the DAG. Similar to the | |
|   Cudd_CountMinterm procedure except this returns the minterm count for | |
|   all the nodes in the bdd in an st_table.] | |
|  | |
|   SideEffects [none] | |
|  | |
|   SeeAlso     [SubsetCountMintermAux] | |
|  | |
| ******************************************************************************/ | |
| static st_table * | |
| SubsetCountMinterm( | |
|   DdNode * node /* function to be analyzed */, | |
|   int nvars /* number of variables node depends on */) | |
| { | |
|     st_table	*table; | |
|     int i; | |
| 
 | |
| 
 | |
| #ifdef DEBUG | |
|     num_calls = 0; | |
| #endif | |
|  | |
|     max = pow(2.0,(double) nvars); | |
|     table = st_init_table(st_ptrcmp,st_ptrhash); | |
|     if (table == NULL) goto OUT_OF_MEM; | |
|     maxPages = INITIAL_PAGES; | |
|     mintermPages = ALLOC(double *,maxPages); | |
|     if (mintermPages == NULL) { | |
| 	st_free_table(table); | |
| 	goto OUT_OF_MEM; | |
|     } | |
|     page = 0; | |
|     currentMintermPage = ALLOC(double,pageSize); | |
|     mintermPages[page] = currentMintermPage; | |
|     if (currentMintermPage == NULL) { | |
| 	FREE(mintermPages); | |
| 	st_free_table(table); | |
| 	goto OUT_OF_MEM; | |
|     } | |
|     pageIndex = 0; | |
|     maxNodeDataPages = INITIAL_PAGES; | |
|     nodeDataPages = ALLOC(NodeData_t *, maxNodeDataPages); | |
|     if (nodeDataPages == NULL) { | |
| 	for (i = 0; i <= page ; i++) FREE(mintermPages[i]); | |
| 	FREE(mintermPages); | |
| 	st_free_table(table); | |
| 	goto OUT_OF_MEM; | |
|     } | |
|     nodeDataPage = 0; | |
|     currentNodeDataPage = ALLOC(NodeData_t ,nodeDataPageSize); | |
|     nodeDataPages[nodeDataPage] = currentNodeDataPage; | |
|     if (currentNodeDataPage == NULL) { | |
| 	for (i = 0; i <= page ; i++) FREE(mintermPages[i]); | |
| 	FREE(mintermPages); | |
| 	FREE(nodeDataPages); | |
| 	st_free_table(table); | |
| 	goto OUT_OF_MEM; | |
|     } | |
|     nodeDataPageIndex = 0; | |
| 
 | |
|     (void) SubsetCountMintermAux(node,max,table); | |
|     if (memOut) goto OUT_OF_MEM; | |
|     return(table); | |
| 
 | |
| OUT_OF_MEM: | |
|     memOut = 1; | |
|     return(NULL); | |
| 
 | |
| } /* end of SubsetCountMinterm */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Recursively counts the number of nodes under the dag. | |
|   Also counts the number of nodes under the lighter child of | |
|   this node.] | |
|  | |
|   Description [Recursively counts the number of nodes under the dag. | |
|   Also counts the number of nodes under the lighter child of | |
|   this node. . Note that the same dag may be the lighter child of two | |
|   different nodes and have different counts. As with the minterm counts, | |
|   the node counts are stored in pages to be space efficient and the | |
|   address for these node counts are stored in an st_table associated | |
|   to each node. ] | |
|  | |
|   SideEffects [Updates the node data table with node counts] | |
|  | |
|   SeeAlso     [SubsetCountNodes] | |
|  | |
| ******************************************************************************/ | |
| static int | |
| SubsetCountNodesAux( | |
|   DdNode * node /* current node */, | |
|   st_table * table /* table to update node count, also serves as visited table. */, | |
|   double  max /* maximum number of variables */) | |
| { | |
|     int tval, eval, i; | |
|     DdNode *N, *Nv, *Nnv; | |
|     double minNv, minNnv; | |
|     NodeData_t *dummyN, *dummyNv, *dummyNnv, *dummyNBar; | |
|     int *pmin, *pminBar, *val; | |
| 
 | |
|     if ((node == NULL) || Cudd_IsConstant(node)) | |
| 	return(0); | |
| 
 | |
|     /* if this node has been processed do nothing */ | |
|     if (st_lookup(table, node, &dummyN) == 1) { | |
| 	val = dummyN->nodesPointer; | |
| 	if (val != NULL) | |
| 	    return(0); | |
|     } else { | |
| 	return(0); | |
|     } | |
| 
 | |
|     N  = Cudd_Regular(node); | |
|     Nv = Cudd_T(N); | |
|     Nnv = Cudd_E(N); | |
| 
 | |
|     Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); | |
|     Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); | |
| 
 | |
|     /* find the minterm counts for the THEN and ELSE branches */ | |
|     if (Cudd_IsConstant(Nv)) { | |
| 	if (Nv == zero) { | |
| 	    minNv = 0.0; | |
| 	} else { | |
| 	    minNv = max; | |
| 	} | |
|     } else { | |
| 	if (st_lookup(table, Nv, &dummyNv) == 1) | |
| 	    minNv = *(dummyNv->mintermPointer); | |
| 	else { | |
| 	    return(0); | |
| 	} | |
|     } | |
|     if (Cudd_IsConstant(Nnv)) { | |
| 	if (Nnv == zero) { | |
| 	    minNnv = 0.0; | |
| 	} else { | |
| 	    minNnv = max; | |
| 	} | |
|     } else { | |
| 	if (st_lookup(table, Nnv, &dummyNnv) == 1) { | |
| 	    minNnv = *(dummyNnv->mintermPointer); | |
| 	} | |
| 	else { | |
| 	    return(0); | |
| 	} | |
|     } | |
| 
 | |
| 
 | |
|     /* recur based on which has larger minterm, */ | |
|     if (minNv >= minNnv) { | |
| 	tval = SubsetCountNodesAux(Nv, table, max); | |
| 	if (memOut) return(0); | |
| 	eval = SubsetCountNodesAux(Nnv, table, max); | |
| 	if (memOut) return(0); | |
| 
 | |
| 	/* store the node count of the lighter child. */ | |
| 	if (pageIndex == pageSize) ResizeCountNodePages(); | |
| 	if (memOut) { | |
| 	    for (i = 0; i <= page; i++) FREE(mintermPages[i]); | |
| 	    FREE(mintermPages); | |
| 	    for (i = 0; i <= nodeDataPage; i++) FREE(nodeDataPages[i]); | |
| 	    FREE(nodeDataPages); | |
| 	    st_free_table(table); | |
| 	    return(0); | |
| 	} | |
| 	pmin = currentLightNodePage + pageIndex; | |
| 	*pmin = eval; /* Here the ELSE child is lighter */ | |
| 	dummyN->lightChildNodesPointer = pmin; | |
| 
 | |
|     } else { | |
| 	eval = SubsetCountNodesAux(Nnv, table, max); | |
| 	if (memOut) return(0); | |
| 	tval = SubsetCountNodesAux(Nv, table, max); | |
| 	if (memOut) return(0); | |
| 
 | |
| 	/* store the node count of the lighter child. */ | |
| 	if (pageIndex == pageSize) ResizeCountNodePages(); | |
| 	if (memOut) { | |
| 	    for (i = 0; i <= page; i++) FREE(mintermPages[i]); | |
| 	    FREE(mintermPages); | |
| 	    for (i = 0; i <= nodeDataPage; i++) FREE(nodeDataPages[i]); | |
| 	    FREE(nodeDataPages); | |
| 	    st_free_table(table); | |
| 	    return(0); | |
| 	} | |
| 	pmin = currentLightNodePage + pageIndex; | |
| 	*pmin = tval; /* Here the THEN child is lighter */ | |
| 	dummyN->lightChildNodesPointer = pmin; | |
| 
 | |
|     } | |
|     /* updating the page index for node count storage. */ | |
|     pmin = currentNodePage + pageIndex; | |
|     *pmin = tval + eval + 1; | |
|     dummyN->nodesPointer = pmin; | |
| 
 | |
|     /* pageIndex is parallel page index for count_nodes and count_lightNodes */ | |
|     pageIndex++; | |
| 
 | |
|     /* if this node has been reached first, it belongs to a heavier | |
|        branch. Its complement will be reached later on a lighter branch. | |
|        Hence the complement has zero node count. */ | |
| 
 | |
|     if (st_lookup(table, Cudd_Not(node), &dummyNBar) == 1)  { | |
| 	if (pageIndex == pageSize) ResizeCountNodePages(); | |
| 	if (memOut) { | |
| 	    for (i = 0; i < page; i++) FREE(mintermPages[i]); | |
| 	    FREE(mintermPages); | |
| 	    for (i = 0; i < nodeDataPage; i++) FREE(nodeDataPages[i]); | |
| 	    FREE(nodeDataPages); | |
| 	    st_free_table(table); | |
| 	    return(0); | |
| 	} | |
| 	pminBar = currentLightNodePage + pageIndex; | |
| 	*pminBar = 0; | |
| 	dummyNBar->lightChildNodesPointer = pminBar; | |
| 	/* The lighter child has less nodes than the parent. | |
| 	 * So if parent 0 then lighter child zero | |
| 	 */ | |
| 	if (pageIndex == pageSize) ResizeCountNodePages(); | |
| 	if (memOut) { | |
| 	    for (i = 0; i < page; i++) FREE(mintermPages[i]); | |
| 	    FREE(mintermPages); | |
| 	    for (i = 0; i < nodeDataPage; i++) FREE(nodeDataPages[i]); | |
| 	    FREE(nodeDataPages); | |
| 	    st_free_table(table); | |
| 	    return(0); | |
| 	} | |
| 	pminBar = currentNodePage + pageIndex; | |
| 	*pminBar = 0; | |
| 	dummyNBar->nodesPointer = pminBar ; /* maybe should point to zero */ | |
| 
 | |
| 	pageIndex++; | |
|     } | |
|     return(*pmin); | |
| } /*end of SubsetCountNodesAux */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Counts the nodes under the current node and its lighter child] | |
|  | |
|   Description [Counts the nodes under the current node and its lighter | |
|   child. Calls a recursive procedure to count the number of nodes of | |
|   a DAG rooted at a particular node and the number of nodes taken by its | |
|   lighter child.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [SubsetCountNodesAux] | |
|  | |
| ******************************************************************************/ | |
| static int | |
| SubsetCountNodes( | |
|   DdNode * node /* function to be analyzed */, | |
|   st_table * table /* node quality table */, | |
|   int  nvars /* number of variables node depends on */) | |
| { | |
|     int	num; | |
|     int i; | |
| 
 | |
| #ifdef DEBUG | |
|     num_calls = 0; | |
| #endif | |
|  | |
|     max = pow(2.0,(double) nvars); | |
|     maxPages = INITIAL_PAGES; | |
|     nodePages = ALLOC(int *,maxPages); | |
|     if (nodePages == NULL)  { | |
| 	goto OUT_OF_MEM; | |
|     } | |
| 
 | |
|     lightNodePages = ALLOC(int *,maxPages); | |
|     if (lightNodePages == NULL) { | |
| 	for (i = 0; i <= page; i++) FREE(mintermPages[i]); | |
| 	FREE(mintermPages); | |
| 	for (i = 0; i <= nodeDataPage; i++) FREE(nodeDataPages[i]); | |
| 	FREE(nodeDataPages); | |
| 	FREE(nodePages); | |
| 	goto OUT_OF_MEM; | |
|     } | |
| 
 | |
|     page = 0; | |
|     currentNodePage = nodePages[page] = ALLOC(int,pageSize); | |
|     if (currentNodePage == NULL) { | |
| 	for (i = 0; i <= page; i++) FREE(mintermPages[i]); | |
| 	FREE(mintermPages); | |
| 	for (i = 0; i <= nodeDataPage; i++) FREE(nodeDataPages[i]); | |
| 	FREE(nodeDataPages); | |
| 	FREE(lightNodePages); | |
| 	FREE(nodePages); | |
| 	goto OUT_OF_MEM; | |
|     } | |
| 
 | |
|     currentLightNodePage = lightNodePages[page] = ALLOC(int,pageSize); | |
|     if (currentLightNodePage == NULL) { | |
| 	for (i = 0; i <= page; i++) FREE(mintermPages[i]); | |
| 	FREE(mintermPages); | |
| 	for (i = 0; i <= nodeDataPage; i++) FREE(nodeDataPages[i]); | |
| 	FREE(nodeDataPages); | |
| 	FREE(currentNodePage); | |
| 	FREE(lightNodePages); | |
| 	FREE(nodePages); | |
| 	goto OUT_OF_MEM; | |
|     } | |
| 
 | |
|     pageIndex = 0; | |
|     num = SubsetCountNodesAux(node,table,max); | |
|     if (memOut) goto OUT_OF_MEM; | |
|     return(num); | |
| 
 | |
| OUT_OF_MEM: | |
|     memOut = 1; | |
|     return(0); | |
| 
 | |
| } /* end of SubsetCountNodes */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Procedure to recursively store nodes that are retained in the subset.] | |
|  | |
|   Description [rocedure to recursively store nodes that are retained in the subset.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [StoreNodes] | |
|  | |
| ******************************************************************************/ | |
| static void | |
| StoreNodes( | |
|   st_table * storeTable, | |
|   DdManager * dd, | |
|   DdNode * node) | |
| { | |
|     DdNode *N, *Nt, *Ne; | |
|     if (Cudd_IsConstant(dd)) { | |
| 	return; | |
|     } | |
|     N = Cudd_Regular(node); | |
|     if (st_lookup(storeTable, N, NULL)) { | |
| 	return; | |
|     } | |
|     cuddRef(N); | |
|     if (st_insert(storeTable, N, NULL) == ST_OUT_OF_MEM) { | |
| 	fprintf(dd->err,"Something wrong, st_table insert failed\n"); | |
|     } | |
| 
 | |
|     Nt = Cudd_T(N); | |
|     Ne = Cudd_E(N); | |
| 
 | |
|     StoreNodes(storeTable, dd, Nt); | |
|     StoreNodes(storeTable, dd, Ne); | |
|     return; | |
| 
 | |
| } | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Builds the subset BDD using the heavy branch method.] | |
|  | |
|   Description [The procedure carries out the building of the subset BDD | |
|   starting at the root. Using the three different counts labelling each node, | |
|   the procedure chooses the heavier branch starting from the root and keeps | |
|   track of the number of nodes it discards at each step, thus keeping count | |
|   of the size of the subset BDD dynamically. Once the threshold is satisfied, | |
|   the procedure then calls ITE to build the BDD.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [] | |
|  | |
| ******************************************************************************/ | |
| static DdNode * | |
| BuildSubsetBdd( | |
|   DdManager * dd /* DD manager */, | |
|   DdNode * node /* current node */, | |
|   int * size /* current size of the subset */, | |
|   st_table * visitedTable /* visited table storing all node data */, | |
|   int  threshold, | |
|   st_table * storeTable, | |
|   st_table * approxTable) | |
| { | |
| 
 | |
|     DdNode *Nv, *Nnv, *N, *topv, *neW; | |
|     double minNv, minNnv; | |
|     NodeData_t *currNodeQual; | |
|     NodeData_t *currNodeQualT; | |
|     NodeData_t *currNodeQualE; | |
|     DdNode *ThenBranch, *ElseBranch; | |
|     unsigned int topid; | |
|     char *dummy; | |
| 
 | |
| #ifdef DEBUG | |
|     num_calls++; | |
| #endif | |
|     /*If the size of the subset is below the threshold, dont do | |
|       anything. */ | |
|     if ((*size) <= threshold) { | |
|       /* store nodes below this, so we can recombine if possible */ | |
|       StoreNodes(storeTable, dd, node); | |
|       return(node); | |
|     } | |
| 
 | |
|     if (Cudd_IsConstant(node)) | |
| 	return(node); | |
| 
 | |
|     /* Look up minterm count for this node. */ | |
|     if (!st_lookup(visitedTable, node, &currNodeQual)) { | |
| 	fprintf(dd->err, | |
| 		"Something is wrong, ought to be in node quality table\n"); | |
|     } | |
| 
 | |
|     /* Get children. */ | |
|     N = Cudd_Regular(node); | |
|     Nv = Cudd_T(N); | |
|     Nnv = Cudd_E(N); | |
| 
 | |
|     /* complement if necessary */ | |
|     Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); | |
|     Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); | |
| 
 | |
|     if (!Cudd_IsConstant(Nv)) { | |
| 	/* find out minterms and nodes contributed by then child */ | |
| 	if (!st_lookup(visitedTable, Nv, &currNodeQualT)) { | |
| 		fprintf(dd->out,"Something wrong, couldnt find nodes in node quality table\n"); | |
| 		dd->errorCode = CUDD_INTERNAL_ERROR; | |
| 		return(NULL); | |
| 	    } | |
| 	else { | |
| 	    minNv = *(((NodeData_t *)currNodeQualT)->mintermPointer); | |
| 	} | |
|     } else { | |
| 	if (Nv == zero) { | |
| 	    minNv = 0; | |
| 	} else  { | |
| 	    minNv = max; | |
| 	} | |
|     } | |
|     if (!Cudd_IsConstant(Nnv)) { | |
| 	/* find out minterms and nodes contributed by else child */ | |
| 	if (!st_lookup(visitedTable, Nnv, &currNodeQualE)) { | |
| 	    fprintf(dd->out,"Something wrong, couldnt find nodes in node quality table\n"); | |
| 	    dd->errorCode = CUDD_INTERNAL_ERROR; | |
| 	    return(NULL); | |
| 	} else { | |
| 	    minNnv = *(((NodeData_t *)currNodeQualE)->mintermPointer); | |
| 	} | |
|     } else { | |
| 	if (Nnv == zero) { | |
| 	    minNnv = 0; | |
| 	} else { | |
| 	    minNnv = max; | |
| 	} | |
|     } | |
| 
 | |
|     /* keep track of size of subset by subtracting the number of | |
|      * differential nodes contributed by lighter child | |
|      */ | |
|     *size = (*(size)) - (int)*(currNodeQual->lightChildNodesPointer); | |
|     if (minNv >= minNnv) { /*SubsetCountNodesAux procedure takes | |
| 			     the Then branch in case of a tie */ | |
| 
 | |
| 	/* recur with the Then branch */ | |
| 	ThenBranch = (DdNode *)BuildSubsetBdd(dd, Nv, size, | |
| 	      visitedTable, threshold, storeTable, approxTable); | |
| 	if (ThenBranch == NULL) { | |
| 	    return(NULL); | |
| 	} | |
| 	cuddRef(ThenBranch); | |
| 	/* The Else branch is either a node that already exists in the | |
| 	 * subset, or one whose approximation has been computed, or | |
| 	 * Zero. | |
| 	 */ | |
| 	if (st_lookup(storeTable, Cudd_Regular(Nnv), &dummy)) { | |
| 	  ElseBranch = Nnv; | |
| 	  cuddRef(ElseBranch); | |
| 	} else { | |
| 	  if (st_lookup(approxTable, Nnv, &dummy)) { | |
| 	    ElseBranch = (DdNode *)dummy; | |
| 	    cuddRef(ElseBranch); | |
| 	  } else { | |
| 	    ElseBranch = zero; | |
| 	    cuddRef(ElseBranch); | |
| 	  } | |
| 	} | |
| 
 | |
|     } | |
|     else { | |
| 	/* recur with the Else branch */ | |
| 	ElseBranch = (DdNode *)BuildSubsetBdd(dd, Nnv, size, | |
| 		      visitedTable, threshold, storeTable, approxTable); | |
| 	if (ElseBranch == NULL) { | |
| 	    return(NULL); | |
| 	} | |
| 	cuddRef(ElseBranch); | |
| 	/* The Then branch is either a node that already exists in the | |
| 	 * subset, or one whose approximation has been computed, or | |
| 	 * Zero. | |
| 	 */ | |
| 	if (st_lookup(storeTable, Cudd_Regular(Nv), &dummy)) { | |
| 	  ThenBranch = Nv; | |
| 	  cuddRef(ThenBranch); | |
| 	} else { | |
| 	  if (st_lookup(approxTable, Nv, &dummy)) { | |
| 	    ThenBranch = (DdNode *)dummy; | |
| 	    cuddRef(ThenBranch); | |
| 	  } else { | |
| 	    ThenBranch = zero; | |
| 	    cuddRef(ThenBranch); | |
| 	  } | |
| 	} | |
|     } | |
| 
 | |
|     /* construct the Bdd with the top variable and the two children */ | |
|     topid = Cudd_NodeReadIndex(N); | |
|     topv = Cudd_ReadVars(dd, topid); | |
|     cuddRef(topv); | |
|     neW =  cuddBddIteRecur(dd, topv, ThenBranch, ElseBranch); | |
|     if (neW != NULL) { | |
|       cuddRef(neW); | |
|     } | |
|     Cudd_RecursiveDeref(dd, topv); | |
|     Cudd_RecursiveDeref(dd, ThenBranch); | |
|     Cudd_RecursiveDeref(dd, ElseBranch); | |
| 
 | |
| 
 | |
|     if (neW == NULL) | |
| 	return(NULL); | |
|     else { | |
| 	/* store this node in the store table */ | |
| 	if (!st_lookup(storeTable, Cudd_Regular(neW), &dummy)) { | |
| 	  cuddRef(neW); | |
| 	  if (st_insert(storeTable, Cudd_Regular(neW), NULL) == | |
|               ST_OUT_OF_MEM) | |
|               return (NULL); | |
| 	} | |
| 	/* store the approximation for this node */ | |
| 	if (N !=  Cudd_Regular(neW)) { | |
| 	    if (st_lookup(approxTable, node, &dummy)) { | |
| 		fprintf(dd->err, "This node should not be in the approximated table\n"); | |
| 	    } else { | |
| 		cuddRef(neW); | |
| 		if (st_insert(approxTable, node, neW) == | |
|                     ST_OUT_OF_MEM) | |
| 		    return(NULL); | |
| 	    } | |
| 	} | |
| 	cuddDeref(neW); | |
| 	return(neW); | |
|     } | |
| } /* end of BuildSubsetBdd */
 |