You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							110 lines
						
					
					
						
							4.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							110 lines
						
					
					
						
							4.3 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
|  | |
| template<typename T> bool isNotNaN(const T& x) | |
| { | |
|   return x==x; | |
| } | |
| 
 | |
| // workaround aggressive optimization in ICC | |
| template<typename T> EIGEN_DONT_INLINE  T sub(T a, T b) { return a - b; } | |
| 
 | |
| template<typename T> bool isFinite(const T& x) | |
| { | |
|   return isNotNaN(sub(x,x)); | |
| } | |
| 
 | |
| template<typename T> EIGEN_DONT_INLINE T copy(const T& x) | |
| { | |
|   return x; | |
| } | |
| 
 | |
| template<typename MatrixType> void stable_norm(const MatrixType& m) | |
| { | |
|   /* this test covers the following files: | |
|      StableNorm.h | |
|   */ | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
| 
 | |
|   // Check the basic machine-dependent constants. | |
|   { | |
|     int ibeta, it, iemin, iemax; | |
| 
 | |
|     ibeta = std::numeric_limits<RealScalar>::radix;         // base for floating-point numbers | |
|     it    = std::numeric_limits<RealScalar>::digits;        // number of base-beta digits in mantissa | |
|     iemin = std::numeric_limits<RealScalar>::min_exponent;  // minimum exponent | |
|     iemax = std::numeric_limits<RealScalar>::max_exponent;  // maximum exponent | |
|  | |
|     VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2)) | |
|            && "the stable norm algorithm cannot be guaranteed on this computer"); | |
|   } | |
| 
 | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   Scalar big = internal::random<Scalar>() * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); | |
|   Scalar small = internal::random<Scalar>() * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4)); | |
| 
 | |
|   MatrixType  vzero = MatrixType::Zero(rows, cols), | |
|               vrand = MatrixType::Random(rows, cols), | |
|               vbig(rows, cols), | |
|               vsmall(rows,cols); | |
| 
 | |
|   vbig.fill(big); | |
|   vsmall.fill(small); | |
| 
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); | |
|   VERIFY_IS_APPROX(vrand.stableNorm(),      vrand.norm()); | |
|   VERIFY_IS_APPROX(vrand.blueNorm(),        vrand.norm()); | |
|   VERIFY_IS_APPROX(vrand.hypotNorm(),       vrand.norm()); | |
| 
 | |
|   RealScalar size = static_cast<RealScalar>(m.size()); | |
| 
 | |
|   // test isFinite | |
|   VERIFY(!isFinite( std::numeric_limits<RealScalar>::infinity())); | |
|   VERIFY(!isFinite(internal::sqrt(-internal::abs(big)))); | |
| 
 | |
|   // test overflow | |
|   VERIFY(isFinite(internal::sqrt(size)*internal::abs(big))); | |
|   VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vbig.squaredNorm())),   internal::abs(internal::sqrt(size)*big)); // here the default norm must fail | |
|   VERIFY_IS_APPROX(vbig.stableNorm(), internal::sqrt(size)*internal::abs(big)); | |
|   VERIFY_IS_APPROX(vbig.blueNorm(),   internal::sqrt(size)*internal::abs(big)); | |
|   VERIFY_IS_APPROX(vbig.hypotNorm(),  internal::sqrt(size)*internal::abs(big)); | |
| 
 | |
|   // test underflow | |
|   VERIFY(isFinite(internal::sqrt(size)*internal::abs(small))); | |
|   VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vsmall.squaredNorm())),   internal::abs(internal::sqrt(size)*small)); // here the default norm must fail | |
|   VERIFY_IS_APPROX(vsmall.stableNorm(), internal::sqrt(size)*internal::abs(small)); | |
|   VERIFY_IS_APPROX(vsmall.blueNorm(),   internal::sqrt(size)*internal::abs(small)); | |
|   VERIFY_IS_APPROX(vsmall.hypotNorm(),  internal::sqrt(size)*internal::abs(small)); | |
| 
 | |
| // Test compilation of cwise() version | |
|   VERIFY_IS_APPROX(vrand.colwise().stableNorm(),      vrand.colwise().norm()); | |
|   VERIFY_IS_APPROX(vrand.colwise().blueNorm(),        vrand.colwise().norm()); | |
|   VERIFY_IS_APPROX(vrand.colwise().hypotNorm(),       vrand.colwise().norm()); | |
|   VERIFY_IS_APPROX(vrand.rowwise().stableNorm(),      vrand.rowwise().norm()); | |
|   VERIFY_IS_APPROX(vrand.rowwise().blueNorm(),        vrand.rowwise().norm()); | |
|   VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(),       vrand.rowwise().norm()); | |
| } | |
| 
 | |
| void test_stable_norm() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( stable_norm(Vector4d()) ); | |
|     CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) ); | |
|     CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) ); | |
|     CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) ); | |
|   } | |
| }
 |