You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							286 lines
						
					
					
						
							9.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							286 lines
						
					
					
						
							9.6 KiB
						
					
					
				
								#include <cuda.h>
							 | 
						|
								#include <stdlib.h>
							 | 
						|
								#include <stdio.h>
							 | 
						|
								
							 | 
						|
								#include <chrono>
							 | 
						|
								#include <iostream>
							 | 
						|
								
							 | 
						|
								__global__ void cuda_kernel_basicAdd(int a, int b, int *c) { 
							 | 
						|
									*c = a + b; 
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								__global__ void cuda_kernel_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
							 | 
						|
									// Fused Multiply Add:
							 | 
						|
									// A * B + C => D
							 | 
						|
								
							 | 
						|
									/*
							 | 
						|
								     *Die Variable i dient für den Zugriff auf das Array. Da jeder Thread die Funktion VecAdd
							 | 
						|
								     *ausführt, muss i für jeden Thread unterschiedlich sein. Ansonsten würden unterschiedliche
							 | 
						|
								     *Threads auf denselben Index im Array schreiben. blockDim.x ist die Anzahl der Threads der x-Komponente
							 | 
						|
								     *des Blocks, blockIdx.x ist die x-Koordinate des aktuellen Blocks und threadIdx.x ist die x-Koordinate des
							 | 
						|
								     *Threads, der die Funktion gerade ausführt.
							 | 
						|
								    */
							 | 
						|
								    int i = blockDim.x * blockIdx.x + threadIdx.x;
							 | 
						|
								
							 | 
						|
									if (i < N) {
							 | 
						|
										D[i] = A[i] * B[i] + C[i];
							 | 
						|
									}
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								__global__ void cuda_kernel_arrayFmaOptimized(int * const A, int const N, int const M) {
							 | 
						|
									// Fused Multiply Add:
							 | 
						|
									// A * B + C => D
							 | 
						|
								
							 | 
						|
									// Layout:
							 | 
						|
									// A B C D A B C D A B C D
							 | 
						|
								
							 | 
						|
								    int i = blockDim.x * blockIdx.x + threadIdx.x;
							 | 
						|
								
							 | 
						|
									if ((i*M) < N) {
							 | 
						|
										for (int j = i*M; j < i*M + M; ++j) {
							 | 
						|
											A[j*4 + 3] = A[j*4] * A[j*4 + 1] + A[j*4 + 2];
							 | 
						|
										}
							 | 
						|
									}
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								extern "C" int cuda_basicAdd(int a, int b) {
							 | 
						|
									int c = 0;
							 | 
						|
									int *dev_c;
							 | 
						|
									cudaMalloc((void**)&dev_c, sizeof(int));
							 | 
						|
									cuda_kernel_basicAdd<<<1, 1>>>(a, b, dev_c);
							 | 
						|
									cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost);
							 | 
						|
									//printf("%d + %d + 42 is %d\n", a, b, c);
							 | 
						|
									cudaFree(dev_c);
							 | 
						|
									return c;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void cpp_cuda_bandwidthTest(int entryCount, int N) {
							 | 
						|
									// Size of the Arrays
							 | 
						|
									size_t arraySize = entryCount * sizeof(int);
							 | 
						|
									
							 | 
						|
									int* deviceIntArray;
							 | 
						|
									int* hostIntArray = new int[arraySize];
							 | 
						|
								
							 | 
						|
									// Allocate space on the device
							 | 
						|
									auto start_time = std::chrono::high_resolution_clock::now();
							 | 
						|
									for (int i = 0; i < N; ++i) {
							 | 
						|
										if (cudaMalloc((void**)&deviceIntArray, arraySize) != cudaSuccess) {
							 | 
						|
											std::cout << "Error in cudaMalloc while allocating " << arraySize << " Bytes!" << std::endl;
							 | 
						|
											delete[] hostIntArray;
							 | 
						|
											return;
							 | 
						|
										}
							 | 
						|
										// Free memory on device
							 | 
						|
										if (cudaFree(deviceIntArray) != cudaSuccess) {
							 | 
						|
											std::cout << "Error in cudaFree!" << std::endl;
							 | 
						|
											delete[] hostIntArray;
							 | 
						|
											return;
							 | 
						|
										}
							 | 
						|
									}
							 | 
						|
									auto end_time = std::chrono::high_resolution_clock::now();
							 | 
						|
									auto copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
							 | 
						|
									double mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
							 | 
						|
									std::cout << "Allocating the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
							 | 
						|
									std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second Allocationspeed." << std::endl;
							 | 
						|
								
							 | 
						|
									if (cudaMalloc((void**)&deviceIntArray, arraySize) != cudaSuccess) {
							 | 
						|
										std::cout << "Error in cudaMalloc while allocating " << arraySize << " Bytes for copyTest!" << std::endl;
							 | 
						|
										delete[] hostIntArray;
							 | 
						|
										return;
							 | 
						|
									}
							 | 
						|
									
							 | 
						|
									// Prepare data
							 | 
						|
									for (int i = 0; i < N; ++i) {
							 | 
						|
										hostIntArray[i] = i * 333 + 123;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									// Copy data TO device
							 | 
						|
									start_time = std::chrono::high_resolution_clock::now();
							 | 
						|
									for (int i = 0; i < N; ++i) {
							 | 
						|
										if (cudaMemcpy(deviceIntArray, hostIntArray, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
							 | 
						|
											std::cout << "Error in cudaMemcpy while copying " << arraySize << " Bytes to device!" << std::endl;
							 | 
						|
											// Free memory on device
							 | 
						|
											if (cudaFree(deviceIntArray) != cudaSuccess) {
							 | 
						|
												std::cout << "Error in cudaFree!" << std::endl;
							 | 
						|
											}
							 | 
						|
											delete[] hostIntArray;
							 | 
						|
											return;
							 | 
						|
										}
							 | 
						|
									}
							 | 
						|
									end_time = std::chrono::high_resolution_clock::now();
							 | 
						|
									copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
							 | 
						|
									mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
							 | 
						|
									std::cout << "Copying the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
							 | 
						|
									std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second TO device." << std::endl;
							 | 
						|
								
							 | 
						|
									// Copy data FROM device
							 | 
						|
									start_time = std::chrono::high_resolution_clock::now();
							 | 
						|
									for (int i = 0; i < N; ++i) {
							 | 
						|
										if (cudaMemcpy(hostIntArray, deviceIntArray, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
							 | 
						|
											std::cout << "Error in cudaMemcpy while copying " << arraySize << " Bytes to host!" << std::endl;
							 | 
						|
											// Free memory on device
							 | 
						|
											if (cudaFree(deviceIntArray) != cudaSuccess) {
							 | 
						|
												std::cout << "Error in cudaFree!" << std::endl;
							 | 
						|
											}
							 | 
						|
											delete[] hostIntArray;
							 | 
						|
											return;
							 | 
						|
										}
							 | 
						|
									}
							 | 
						|
									end_time = std::chrono::high_resolution_clock::now();
							 | 
						|
									copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
							 | 
						|
									mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
							 | 
						|
									std::cout << "Copying the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
							 | 
						|
									std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second FROM device." << std::endl;
							 | 
						|
								
							 | 
						|
									// Free memory on device
							 | 
						|
									if (cudaFree(deviceIntArray) != cudaSuccess) {
							 | 
						|
										std::cout << "Error in cudaFree!" << std::endl;
							 | 
						|
									}
							 | 
						|
									delete[] hostIntArray;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								extern "C" void cuda_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
							 | 
						|
									// Size of the Arrays
							 | 
						|
									size_t arraySize = N * sizeof(int);
							 | 
						|
									
							 | 
						|
									int* deviceIntArrayA;
							 | 
						|
									int* deviceIntArrayB;
							 | 
						|
									int* deviceIntArrayC;
							 | 
						|
									int* deviceIntArrayD;
							 | 
						|
								
							 | 
						|
									// Allocate space on the device
							 | 
						|
									if (cudaMalloc((void**)&deviceIntArrayA, arraySize) != cudaSuccess) {
							 | 
						|
										printf("Error in cudaMalloc1!\n");
							 | 
						|
										return;
							 | 
						|
									}
							 | 
						|
									if (cudaMalloc((void**)&deviceIntArrayB, arraySize) != cudaSuccess) {
							 | 
						|
										printf("Error in cudaMalloc2!\n");
							 | 
						|
										cudaFree(deviceIntArrayA);
							 | 
						|
										return;
							 | 
						|
									}
							 | 
						|
									if (cudaMalloc((void**)&deviceIntArrayC, arraySize) != cudaSuccess) {
							 | 
						|
										printf("Error in cudaMalloc3!\n");
							 | 
						|
										cudaFree(deviceIntArrayA);
							 | 
						|
										cudaFree(deviceIntArrayB);
							 | 
						|
										return;
							 | 
						|
									}
							 | 
						|
									if (cudaMalloc((void**)&deviceIntArrayD, arraySize) != cudaSuccess) {
							 | 
						|
										printf("Error in cudaMalloc4!\n");
							 | 
						|
										cudaFree(deviceIntArrayA);
							 | 
						|
										cudaFree(deviceIntArrayB);
							 | 
						|
										cudaFree(deviceIntArrayC);
							 | 
						|
										return;
							 | 
						|
									}
							 | 
						|
									
							 | 
						|
									// Copy data TO device
							 | 
						|
									if (cudaMemcpy(deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
							 | 
						|
										printf("Error in cudaMemcpy!\n");
							 | 
						|
										cudaFree(deviceIntArrayA);
							 | 
						|
										cudaFree(deviceIntArrayB);
							 | 
						|
										cudaFree(deviceIntArrayC);
							 | 
						|
										cudaFree(deviceIntArrayD);
							 | 
						|
										return;
							 | 
						|
									}
							 | 
						|
									if (cudaMemcpy(deviceIntArrayB, B, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
							 | 
						|
										printf("Error in cudaMemcpy!\n");
							 | 
						|
										cudaFree(deviceIntArrayA);
							 | 
						|
										cudaFree(deviceIntArrayB);
							 | 
						|
										cudaFree(deviceIntArrayC);
							 | 
						|
										cudaFree(deviceIntArrayD);
							 | 
						|
										return;
							 | 
						|
									}
							 | 
						|
									if (cudaMemcpy(deviceIntArrayC, C, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
							 | 
						|
										printf("Error in cudaMemcpy!\n");
							 | 
						|
										cudaFree(deviceIntArrayA);
							 | 
						|
										cudaFree(deviceIntArrayB);
							 | 
						|
										cudaFree(deviceIntArrayC);
							 | 
						|
										cudaFree(deviceIntArrayD);
							 | 
						|
										return;
							 | 
						|
									}
							 | 
						|
									
							 | 
						|
								    // Festlegung der Threads pro Block
							 | 
						|
								    int threadsPerBlock = 512;
							 | 
						|
								    // Es werden soviele Blöcke benötigt, dass alle Elemente der Vektoren abgearbeitet werden können
							 | 
						|
								    int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
							 | 
						|
								
							 | 
						|
									// Run kernel
							 | 
						|
									cuda_kernel_arrayFma<<<blocksPerGrid, threadsPerBlock>>>(deviceIntArrayA, deviceIntArrayB, deviceIntArrayC, deviceIntArrayD, N);
							 | 
						|
								
							 | 
						|
									// Copy data FROM device
							 | 
						|
									if (cudaMemcpy(D, deviceIntArrayD, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
							 | 
						|
										printf("Error in cudaMemcpy!\n");
							 | 
						|
										cudaFree(deviceIntArrayA);
							 | 
						|
										cudaFree(deviceIntArrayB);
							 | 
						|
										cudaFree(deviceIntArrayC);
							 | 
						|
										cudaFree(deviceIntArrayD);
							 | 
						|
										return;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									// Free memory on device
							 | 
						|
									cudaFree(deviceIntArrayA);
							 | 
						|
									cudaFree(deviceIntArrayB);
							 | 
						|
									cudaFree(deviceIntArrayC);
							 | 
						|
									cudaFree(deviceIntArrayD);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								extern "C" void cuda_arrayFmaOptimized(int * const A, int const N, int const M) {
							 | 
						|
									// Size of the Arrays
							 | 
						|
									size_t arraySize = N * sizeof(int) * 4;
							 | 
						|
									
							 | 
						|
									int* deviceIntArrayA;
							 | 
						|
								
							 | 
						|
									// Allocate space on the device
							 | 
						|
									if (cudaMalloc((void**)&deviceIntArrayA, arraySize) != cudaSuccess) {
							 | 
						|
										printf("Error in cudaMalloc1!\n");
							 | 
						|
										return;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
								#define ONFAILFREE0() do { } while(0)
							 | 
						|
								#define ONFAILFREE1(a) do { cudaFree(a); } while(0)
							 | 
						|
								#define ONFAILFREE2(a, b) do { cudaFree(a); cudaFree(b); } while(0)
							 | 
						|
								#define ONFAILFREE3(a, b, c) do { cudaFree(a); cudaFree(b); cudaFree(c); } while(0)
							 | 
						|
								#define ONFAILFREE4(a, b, c, d) do { cudaFree(a); cudaFree(b); cudaFree(c); cudaFree(d); } while(0)
							 | 
						|
								#define CHECKED_CUDA_CALL(func__, freeArgs, ...) do { int retCode = cuda##func__ (__VA_ARGS__); if (retCode != cudaSuccess) { freeArgs; printf("Error in func__!\n"); return; } } while(0)
							 | 
						|
								
							 | 
						|
									// Copy data TO device
							 | 
						|
								
							 | 
						|
									CHECKED_CUDA_CALL(Memcpy, ONFAILFREE1(deviceIntArrayA), deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice);
							 | 
						|
								
							 | 
						|
									/*if (cudaMemcpy(deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
							 | 
						|
										printf("Error in cudaMemcpy!\n");
							 | 
						|
										cudaFree(deviceIntArrayA);
							 | 
						|
										return;
							 | 
						|
									}*/
							 | 
						|
									
							 | 
						|
								    // Festlegung der Threads pro Block
							 | 
						|
								    int threadsPerBlock = 512;
							 | 
						|
								    // Es werden soviele Blöcke benötigt, dass alle Elemente der Vektoren abgearbeitet werden können
							 | 
						|
								    int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
							 | 
						|
								
							 | 
						|
									// Run kernel
							 | 
						|
									cuda_kernel_arrayFmaOptimized<<<blocksPerGrid, threadsPerBlock>>>(deviceIntArrayA, N, M);
							 | 
						|
								
							 | 
						|
									// Copy data FROM device
							 | 
						|
									if (cudaMemcpy(A, deviceIntArrayA, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
							 | 
						|
										printf("Error in cudaMemcpy!\n");
							 | 
						|
										cudaFree(deviceIntArrayA);
							 | 
						|
										return;
							 | 
						|
									}
							 | 
						|
								
							 | 
						|
									// Free memory on device
							 | 
						|
									if (cudaFree(deviceIntArrayA) != cudaSuccess) {
							 | 
						|
										printf("Error in cudaFree!\n");
							 | 
						|
										return;
							 | 
						|
									}
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								extern "C" void cuda_arrayFmaHelper(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
							 | 
						|
									for (int i = 0; i < N; ++i) {
							 | 
						|
										D[i] = A[i] * B[i] + C[i];
							 | 
						|
									}
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								extern "C" void cuda_arrayFmaOptimizedHelper(int * const A, int const N) {
							 | 
						|
									for (int i = 0; i < N; i += 4) {
							 | 
						|
										A[i+3] = A[i] * A[i+1] + A[i+2];
							 | 
						|
									}
							 | 
						|
								}
							 |