You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
394 lines
12 KiB
394 lines
12 KiB
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "common.h"
|
|
|
|
/** ZHEMV performs the matrix-vector operation
|
|
*
|
|
* y := alpha*A*x + beta*y,
|
|
*
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
* A is an n by n hermitian matrix.
|
|
*/
|
|
int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
|
|
{
|
|
typedef void (*functype)(int, const Scalar*, int, const Scalar*, Scalar*, Scalar);
|
|
static functype func[2];
|
|
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<2; ++k)
|
|
func[k] = 0;
|
|
|
|
func[UP] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run);
|
|
func[LO] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run);
|
|
|
|
init = true;
|
|
}
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
// check arguments
|
|
int info = 0;
|
|
if(UPLO(*uplo)==INVALID) info = 1;
|
|
else if(*n<0) info = 2;
|
|
else if(*lda<std::max(1,*n)) info = 5;
|
|
else if(*incx==0) info = 7;
|
|
else if(*incy==0) info = 10;
|
|
if(info)
|
|
return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6);
|
|
|
|
if(*n==0)
|
|
return 1;
|
|
|
|
Scalar* actual_x = get_compact_vector(x,*n,*incx);
|
|
Scalar* actual_y = get_compact_vector(y,*n,*incy);
|
|
|
|
if(beta!=Scalar(1))
|
|
{
|
|
if(beta==Scalar(0)) make_vector(actual_y, *n).setZero();
|
|
else make_vector(actual_y, *n) *= beta;
|
|
}
|
|
|
|
if(alpha!=Scalar(0))
|
|
{
|
|
int code = UPLO(*uplo);
|
|
if(code>=2 || func[code]==0)
|
|
return 0;
|
|
|
|
func[code](*n, a, *lda, actual_x, actual_y, alpha);
|
|
}
|
|
|
|
if(actual_x!=x) delete[] actual_x;
|
|
if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/** ZHBMV performs the matrix-vector operation
|
|
*
|
|
* y := alpha*A*x + beta*y,
|
|
*
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
* A is an n by n hermitian band matrix, with k super-diagonals.
|
|
*/
|
|
// int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
|
|
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
|
// {
|
|
// return 1;
|
|
// }
|
|
|
|
/** ZHPMV performs the matrix-vector operation
|
|
*
|
|
* y := alpha*A*x + beta*y,
|
|
*
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
* A is an n by n hermitian matrix, supplied in packed form.
|
|
*/
|
|
// int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
|
// {
|
|
// return 1;
|
|
// }
|
|
|
|
/** ZHPR performs the hermitian rank 1 operation
|
|
*
|
|
* A := alpha*x*conjg( x' ) + A,
|
|
*
|
|
* where alpha is a real scalar, x is an n element vector and A is an
|
|
* n by n hermitian matrix, supplied in packed form.
|
|
*/
|
|
int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap)
|
|
{
|
|
typedef void (*functype)(int, Scalar*, const Scalar*, RealScalar);
|
|
static functype func[2];
|
|
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<2; ++k)
|
|
func[k] = 0;
|
|
|
|
func[UP] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run);
|
|
func[LO] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run);
|
|
|
|
init = true;
|
|
}
|
|
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* ap = reinterpret_cast<Scalar*>(pap);
|
|
RealScalar alpha = *palpha;
|
|
|
|
int info = 0;
|
|
if(UPLO(*uplo)==INVALID) info = 1;
|
|
else if(*n<0) info = 2;
|
|
else if(*incx==0) info = 5;
|
|
if(info)
|
|
return xerbla_(SCALAR_SUFFIX_UP"HPR ",&info,6);
|
|
|
|
if(alpha==Scalar(0))
|
|
return 1;
|
|
|
|
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
|
|
|
|
int code = UPLO(*uplo);
|
|
if(code>=2 || func[code]==0)
|
|
return 0;
|
|
|
|
func[code](*n, ap, x_cpy, alpha);
|
|
|
|
if(x_cpy!=x) delete[] x_cpy;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/** ZHPR2 performs the hermitian rank 2 operation
|
|
*
|
|
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
|
|
*
|
|
* where alpha is a scalar, x and y are n element vectors and A is an
|
|
* n by n hermitian matrix, supplied in packed form.
|
|
*/
|
|
int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap)
|
|
{
|
|
typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar);
|
|
static functype func[2];
|
|
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<2; ++k)
|
|
func[k] = 0;
|
|
|
|
func[UP] = (internal::packed_rank2_update_selector<Scalar,int,Upper>::run);
|
|
func[LO] = (internal::packed_rank2_update_selector<Scalar,int,Lower>::run);
|
|
|
|
init = true;
|
|
}
|
|
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
Scalar* ap = reinterpret_cast<Scalar*>(pap);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
int info = 0;
|
|
if(UPLO(*uplo)==INVALID) info = 1;
|
|
else if(*n<0) info = 2;
|
|
else if(*incx==0) info = 5;
|
|
else if(*incy==0) info = 7;
|
|
if(info)
|
|
return xerbla_(SCALAR_SUFFIX_UP"HPR2 ",&info,6);
|
|
|
|
if(alpha==Scalar(0))
|
|
return 1;
|
|
|
|
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
|
|
Scalar* y_cpy = get_compact_vector(y, *n, *incy);
|
|
|
|
int code = UPLO(*uplo);
|
|
if(code>=2 || func[code]==0)
|
|
return 0;
|
|
|
|
func[code](*n, ap, x_cpy, y_cpy, alpha);
|
|
|
|
if(x_cpy!=x) delete[] x_cpy;
|
|
if(y_cpy!=y) delete[] y_cpy;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/** ZHER performs the hermitian rank 1 operation
|
|
*
|
|
* A := alpha*x*conjg( x' ) + A,
|
|
*
|
|
* where alpha is a real scalar, x is an n element vector and A is an
|
|
* n by n hermitian matrix.
|
|
*/
|
|
int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda)
|
|
{
|
|
typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&);
|
|
static functype func[2];
|
|
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<2; ++k)
|
|
func[k] = 0;
|
|
|
|
func[UP] = (selfadjoint_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run);
|
|
func[LO] = (selfadjoint_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run);
|
|
|
|
init = true;
|
|
}
|
|
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha);
|
|
|
|
int info = 0;
|
|
if(UPLO(*uplo)==INVALID) info = 1;
|
|
else if(*n<0) info = 2;
|
|
else if(*incx==0) info = 5;
|
|
else if(*lda<std::max(1,*n)) info = 7;
|
|
if(info)
|
|
return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6);
|
|
|
|
if(alpha==RealScalar(0))
|
|
return 1;
|
|
|
|
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
|
|
|
|
int code = UPLO(*uplo);
|
|
if(code>=2 || func[code]==0)
|
|
return 0;
|
|
|
|
func[code](*n, a, *lda, x_cpy, x_cpy, alpha);
|
|
|
|
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
|
|
|
|
if(x_cpy!=x) delete[] x_cpy;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/** ZHER2 performs the hermitian rank 2 operation
|
|
*
|
|
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
|
|
*
|
|
* where alpha is a scalar, x and y are n element vectors and A is an n
|
|
* by n hermitian matrix.
|
|
*/
|
|
int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
|
|
{
|
|
typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar);
|
|
static functype func[2];
|
|
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<2; ++k)
|
|
func[k] = 0;
|
|
|
|
func[UP] = (internal::rank2_update_selector<Scalar,int,Upper>::run);
|
|
func[LO] = (internal::rank2_update_selector<Scalar,int,Lower>::run);
|
|
|
|
init = true;
|
|
}
|
|
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
int info = 0;
|
|
if(UPLO(*uplo)==INVALID) info = 1;
|
|
else if(*n<0) info = 2;
|
|
else if(*incx==0) info = 5;
|
|
else if(*incy==0) info = 7;
|
|
else if(*lda<std::max(1,*n)) info = 9;
|
|
if(info)
|
|
return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6);
|
|
|
|
if(alpha==Scalar(0))
|
|
return 1;
|
|
|
|
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
|
|
Scalar* y_cpy = get_compact_vector(y, *n, *incy);
|
|
|
|
int code = UPLO(*uplo);
|
|
if(code>=2 || func[code]==0)
|
|
return 0;
|
|
|
|
func[code](*n, a, *lda, x_cpy, y_cpy, alpha);
|
|
|
|
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
|
|
|
|
if(x_cpy!=x) delete[] x_cpy;
|
|
if(y_cpy!=y) delete[] y_cpy;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/** ZGERU performs the rank 1 operation
|
|
*
|
|
* A := alpha*x*y' + A,
|
|
*
|
|
* where alpha is a scalar, x is an m element vector, y is an n element
|
|
* vector and A is an m by n matrix.
|
|
*/
|
|
int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
int info = 0;
|
|
if(*m<0) info = 1;
|
|
else if(*n<0) info = 2;
|
|
else if(*incx==0) info = 5;
|
|
else if(*incy==0) info = 7;
|
|
else if(*lda<std::max(1,*m)) info = 9;
|
|
if(info)
|
|
return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6);
|
|
|
|
if(alpha==Scalar(0))
|
|
return 1;
|
|
|
|
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
|
|
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
|
|
|
|
internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
|
|
|
|
if(x_cpy!=x) delete[] x_cpy;
|
|
if(y_cpy!=y) delete[] y_cpy;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/** ZGERC performs the rank 1 operation
|
|
*
|
|
* A := alpha*x*conjg( y' ) + A,
|
|
*
|
|
* where alpha is a scalar, x is an m element vector, y is an n element
|
|
* vector and A is an m by n matrix.
|
|
*/
|
|
int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
int info = 0;
|
|
if(*m<0) info = 1;
|
|
else if(*n<0) info = 2;
|
|
else if(*incx==0) info = 5;
|
|
else if(*incy==0) info = 7;
|
|
else if(*lda<std::max(1,*m)) info = 9;
|
|
if(info)
|
|
return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6);
|
|
|
|
if(alpha==Scalar(0))
|
|
return 1;
|
|
|
|
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
|
|
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
|
|
|
|
internal::general_rank1_update<Scalar,int,ColMajor,false,Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
|
|
|
|
if(x_cpy!=x) delete[] x_cpy;
|
|
if(y_cpy!=y) delete[] y_cpy;
|
|
|
|
return 1;
|
|
}
|