You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							117 lines
						
					
					
						
							4.4 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							117 lines
						
					
					
						
							4.4 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
|  | |
| using namespace std; | |
| template<typename MatrixType> void permutationmatrices(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename MatrixType::RealScalar RealScalar; | |
|   enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime, | |
|          Options = MatrixType::Options }; | |
|   typedef PermutationMatrix<Rows> LeftPermutationType; | |
|   typedef Matrix<int, Rows, 1> LeftPermutationVectorType; | |
|   typedef Map<LeftPermutationType> MapLeftPerm; | |
|   typedef PermutationMatrix<Cols> RightPermutationType; | |
|   typedef Matrix<int, Cols, 1> RightPermutationVectorType; | |
|   typedef Map<RightPermutationType> MapRightPerm; | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   MatrixType m_original = MatrixType::Random(rows,cols); | |
|   LeftPermutationVectorType lv; | |
|   randomPermutationVector(lv, rows); | |
|   LeftPermutationType lp(lv); | |
|   RightPermutationVectorType rv; | |
|   randomPermutationVector(rv, cols); | |
|   RightPermutationType rp(rv); | |
|   MatrixType m_permuted = lp * m_original * rp; | |
| 
 | |
|   for (int i=0; i<rows; i++) | |
|     for (int j=0; j<cols; j++) | |
|         VERIFY_IS_APPROX(m_permuted(lv(i),j), m_original(i,rv(j))); | |
| 
 | |
|   Matrix<Scalar,Rows,Rows> lm(lp); | |
|   Matrix<Scalar,Cols,Cols> rm(rp); | |
| 
 | |
|   VERIFY_IS_APPROX(m_permuted, lm*m_original*rm); | |
| 
 | |
|   VERIFY_IS_APPROX(lp.inverse()*m_permuted*rp.inverse(), m_original); | |
|   VERIFY_IS_APPROX(lv.asPermutation().inverse()*m_permuted*rv.asPermutation().inverse(), m_original); | |
|   VERIFY_IS_APPROX(MapLeftPerm(lv.data(),lv.size()).inverse()*m_permuted*MapRightPerm(rv.data(),rv.size()).inverse(), m_original); | |
|    | |
|   VERIFY((lp*lp.inverse()).toDenseMatrix().isIdentity()); | |
|   VERIFY((lv.asPermutation()*lv.asPermutation().inverse()).toDenseMatrix().isIdentity()); | |
|   VERIFY((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv.data(),lv.size()).inverse()).toDenseMatrix().isIdentity()); | |
| 
 | |
|   LeftPermutationVectorType lv2; | |
|   randomPermutationVector(lv2, rows); | |
|   LeftPermutationType lp2(lv2); | |
|   Matrix<Scalar,Rows,Rows> lm2(lp2); | |
|   VERIFY_IS_APPROX((lp*lp2).toDenseMatrix().template cast<Scalar>(), lm*lm2); | |
|   VERIFY_IS_APPROX((lv.asPermutation()*lv2.asPermutation()).toDenseMatrix().template cast<Scalar>(), lm*lm2); | |
|   VERIFY_IS_APPROX((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv2.data(),lv2.size())).toDenseMatrix().template cast<Scalar>(), lm*lm2); | |
| 
 | |
|   LeftPermutationType identityp; | |
|   identityp.setIdentity(rows); | |
|   VERIFY_IS_APPROX(m_original, identityp*m_original); | |
| 
 | |
|   // check inplace permutations | |
|   m_permuted = m_original; | |
|   m_permuted = lp.inverse() * m_permuted; | |
|   VERIFY_IS_APPROX(m_permuted, lp.inverse()*m_original); | |
| 
 | |
|   m_permuted = m_original; | |
|   m_permuted = m_permuted * rp.inverse(); | |
|   VERIFY_IS_APPROX(m_permuted, m_original*rp.inverse()); | |
| 
 | |
|   m_permuted = m_original; | |
|   m_permuted = lp * m_permuted; | |
|   VERIFY_IS_APPROX(m_permuted, lp*m_original); | |
| 
 | |
|   m_permuted = m_original; | |
|   m_permuted = m_permuted * rp; | |
|   VERIFY_IS_APPROX(m_permuted, m_original*rp); | |
| 
 | |
|   if(rows>1 && cols>1) | |
|   { | |
|     lp2 = lp; | |
|     Index i = internal::random<Index>(0, rows-1); | |
|     Index j; | |
|     do j = internal::random<Index>(0, rows-1); while(j==i); | |
|     lp2.applyTranspositionOnTheLeft(i, j); | |
|     lm = lp; | |
|     lm.row(i).swap(lm.row(j)); | |
|     VERIFY_IS_APPROX(lm, lp2.toDenseMatrix().template cast<Scalar>()); | |
| 
 | |
|     RightPermutationType rp2 = rp; | |
|     i = internal::random<Index>(0, cols-1); | |
|     do j = internal::random<Index>(0, cols-1); while(j==i); | |
|     rp2.applyTranspositionOnTheRight(i, j); | |
|     rm = rp; | |
|     rm.col(i).swap(rm.col(j)); | |
|     VERIFY_IS_APPROX(rm, rp2.toDenseMatrix().template cast<Scalar>()); | |
|   }   | |
| } | |
| 
 | |
| void test_permutationmatrices() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( permutationmatrices(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( permutationmatrices(Matrix3f()) ); | |
|     CALL_SUBTEST_3( permutationmatrices(Matrix<double,3,3,RowMajor>()) ); | |
|     CALL_SUBTEST_4( permutationmatrices(Matrix4d()) ); | |
|     CALL_SUBTEST_5( permutationmatrices(Matrix<double,40,60>()) ); | |
|     CALL_SUBTEST_6( permutationmatrices(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 30)) ); | |
|     CALL_SUBTEST_7( permutationmatrices(MatrixXcf(15, 10)) ); | |
|   } | |
| }
 |