You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							102 lines
						
					
					
						
							3.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							102 lines
						
					
					
						
							3.3 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <Eigen/LU> | |
|  | |
| template<typename MatrixType> void inverse(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   /* this test covers the following files: | |
|      Inverse.h | |
|   */ | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; | |
| 
 | |
|   MatrixType m1(rows, cols), | |
|              m2(rows, cols), | |
|              identity = MatrixType::Identity(rows, rows); | |
|   createRandomPIMatrixOfRank(rows,rows,rows,m1); | |
|   m2 = m1.inverse(); | |
|   VERIFY_IS_APPROX(m1, m2.inverse() ); | |
| 
 | |
|   VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5)); | |
| 
 | |
|   VERIFY_IS_APPROX(identity, m1.inverse() * m1 ); | |
|   VERIFY_IS_APPROX(identity, m1 * m1.inverse() ); | |
| 
 | |
|   VERIFY_IS_APPROX(m1, m1.inverse().inverse() ); | |
| 
 | |
|   // since for the general case we implement separately row-major and col-major, test that | |
|   VERIFY_IS_APPROX(MatrixType(m1.transpose().inverse()), MatrixType(m1.inverse().transpose())); | |
| 
 | |
| #if !defined(EIGEN_TEST_PART_5) && !defined(EIGEN_TEST_PART_6) | |
|   //computeInverseAndDetWithCheck tests | |
|   //First: an invertible matrix | |
|   bool invertible; | |
|   RealScalar det; | |
| 
 | |
|   m2.setZero(); | |
|   m1.computeInverseAndDetWithCheck(m2, det, invertible); | |
|   VERIFY(invertible); | |
|   VERIFY_IS_APPROX(identity, m1*m2); | |
|   VERIFY_IS_APPROX(det, m1.determinant()); | |
| 
 | |
|   m2.setZero(); | |
|   m1.computeInverseWithCheck(m2, invertible); | |
|   VERIFY(invertible); | |
|   VERIFY_IS_APPROX(identity, m1*m2); | |
| 
 | |
|   //Second: a rank one matrix (not invertible, except for 1x1 matrices) | |
|   VectorType v3 = VectorType::Random(rows); | |
|   MatrixType m3 = v3*v3.transpose(), m4(rows,cols); | |
|   m3.computeInverseAndDetWithCheck(m4, det, invertible); | |
|   VERIFY( rows==1 ? invertible : !invertible ); | |
|   VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(det-m3.determinant()), RealScalar(1)); | |
|   m3.computeInverseWithCheck(m4, invertible); | |
|   VERIFY( rows==1 ? invertible : !invertible ); | |
| #endif | |
|  | |
|   // check in-place inversion | |
|   if(MatrixType::RowsAtCompileTime>=2 && MatrixType::RowsAtCompileTime<=4) | |
|   { | |
|     // in-place is forbidden | |
|     VERIFY_RAISES_ASSERT(m1 = m1.inverse()); | |
|   } | |
|   else | |
|   { | |
|     m2 = m1.inverse(); | |
|     m1 = m1.inverse(); | |
|     VERIFY_IS_APPROX(m1,m2); | |
|   } | |
| } | |
| 
 | |
| void test_inverse() | |
| { | |
|   int s; | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( inverse(Matrix<double,1,1>()) ); | |
|     CALL_SUBTEST_2( inverse(Matrix2d()) ); | |
|     CALL_SUBTEST_3( inverse(Matrix3f()) ); | |
|     CALL_SUBTEST_4( inverse(Matrix4f()) ); | |
|     CALL_SUBTEST_4( inverse(Matrix<float,4,4,DontAlign>()) ); | |
|     s = internal::random<int>(50,320); | |
|     CALL_SUBTEST_5( inverse(MatrixXf(s,s)) ); | |
|     s = internal::random<int>(25,100); | |
|     CALL_SUBTEST_6( inverse(MatrixXcd(s,s)) ); | |
|     CALL_SUBTEST_7( inverse(Matrix4d()) ); | |
|     CALL_SUBTEST_7( inverse(Matrix<double,4,4,DontAlign>()) ); | |
|   } | |
|   EIGEN_UNUSED_VARIABLE(s) | |
| }
 |