You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							132 lines
						
					
					
						
							5.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							132 lines
						
					
					
						
							5.2 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra. Eigen itself is part of the KDE project.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/Array>
							 | 
						|
								#include <Eigen/QR>
							 | 
						|
								
							 | 
						|
								template<typename Derived1, typename Derived2>
							 | 
						|
								bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = precision<typename Derived1::RealScalar>())
							 | 
						|
								{
							 | 
						|
								  return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon
							 | 
						|
								                          * std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff()));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void product(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     Identity.h Product.h
							 | 
						|
								  */
							 | 
						|
								
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::FloatingPoint FloatingPoint;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
							 | 
						|
								                         MatrixType::Options^RowMajor> OtherMajorMatrixType;
							 | 
						|
								
							 | 
						|
								  int rows = m.rows();
							 | 
						|
								  int cols = m.cols();
							 | 
						|
								
							 | 
						|
								  // this test relies a lot on Random.h, and there's not much more that we can do
							 | 
						|
								  // to test it, hence I consider that we will have tested Random.h
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols),
							 | 
						|
								             m2 = MatrixType::Random(rows, cols),
							 | 
						|
								             m3(rows, cols),
							 | 
						|
								             mzero = MatrixType::Zero(rows, cols);
							 | 
						|
								  RowSquareMatrixType
							 | 
						|
								             identity = RowSquareMatrixType::Identity(rows, rows),
							 | 
						|
								             square = RowSquareMatrixType::Random(rows, rows),
							 | 
						|
								             res = RowSquareMatrixType::Random(rows, rows);
							 | 
						|
								  ColSquareMatrixType
							 | 
						|
								             square2 = ColSquareMatrixType::Random(cols, cols),
							 | 
						|
								             res2 = ColSquareMatrixType::Random(cols, cols);
							 | 
						|
								  RowVectorType v1 = RowVectorType::Random(rows),
							 | 
						|
								             v2 = RowVectorType::Random(rows),
							 | 
						|
								             vzero = RowVectorType::Zero(rows);
							 | 
						|
								  ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
							 | 
						|
								  OtherMajorMatrixType tm1 = m1;
							 | 
						|
								
							 | 
						|
								  Scalar s1 = ei_random<Scalar>();
							 | 
						|
								
							 | 
						|
								  int r = ei_random<int>(0, rows-1),
							 | 
						|
								      c = ei_random<int>(0, cols-1);
							 | 
						|
								
							 | 
						|
								  // begin testing Product.h: only associativity for now
							 | 
						|
								  // (we use Transpose.h but this doesn't count as a test for it)
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
							 | 
						|
								  m3 = m1;
							 | 
						|
								  m3 *= m1.transpose() * m2;
							 | 
						|
								  VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2));
							 | 
						|
								  VERIFY_IS_APPROX(m3,                      m1.lazy() * (m1.transpose()*m2));
							 | 
						|
								
							 | 
						|
								  // continue testing Product.h: distributivity
							 | 
						|
								  VERIFY_IS_APPROX(square*(m1 + m2),        square*m1+square*m2);
							 | 
						|
								  VERIFY_IS_APPROX(square*(m1 - m2),        square*m1-square*m2);
							 | 
						|
								
							 | 
						|
								  // continue testing Product.h: compatibility with ScalarMultiple.h
							 | 
						|
								  VERIFY_IS_APPROX(s1*(square*m1),          (s1*square)*m1);
							 | 
						|
								  VERIFY_IS_APPROX(s1*(square*m1),          square*(m1*s1));
							 | 
						|
								
							 | 
						|
								  // again, test operator() to check const-qualification
							 | 
						|
								  s1 += (square.lazy() * m1)(r,c);
							 | 
						|
								
							 | 
						|
								  // test Product.h together with Identity.h
							 | 
						|
								  VERIFY_IS_APPROX(v1,                      identity*v1);
							 | 
						|
								  VERIFY_IS_APPROX(v1.transpose(),          v1.transpose() * identity);
							 | 
						|
								  // again, test operator() to check const-qualification
							 | 
						|
								  VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
							 | 
						|
								
							 | 
						|
								  if (rows!=cols)
							 | 
						|
								     VERIFY_RAISES_ASSERT(m3 = m1*m1);
							 | 
						|
								
							 | 
						|
								  // test the previous tests were not screwed up because operator* returns 0
							 | 
						|
								  // (we use the more accurate default epsilon)
							 | 
						|
								  if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
							 | 
						|
								  {
							 | 
						|
								    VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test optimized operator+= path
							 | 
						|
								  res = square;
							 | 
						|
								  res += (m1 * m2.transpose()).lazy();
							 | 
						|
								  VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
							 | 
						|
								  if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
							 | 
						|
								  {
							 | 
						|
								    VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
							 | 
						|
								  }
							 | 
						|
								  vcres = vc2;
							 | 
						|
								  vcres += (m1.transpose() * v1).lazy();
							 | 
						|
								  VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
							 | 
						|
								  tm1 = m1;
							 | 
						|
								  VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
							 | 
						|
								  VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
							 | 
						|
								
							 | 
						|
								  // test submatrix and matrix/vector product
							 | 
						|
								  for (int i=0; i<rows; ++i)
							 | 
						|
								    res.row(i) = m1.row(i) * m2.transpose();
							 | 
						|
								  VERIFY_IS_APPROX(res, m1 * m2.transpose());
							 | 
						|
								  // the other way round:
							 | 
						|
								  for (int i=0; i<rows; ++i)
							 | 
						|
								    res.col(i) = m1 * m2.transpose().col(i);
							 | 
						|
								  VERIFY_IS_APPROX(res, m1 * m2.transpose());
							 | 
						|
								
							 | 
						|
								  res2 = square2;
							 | 
						|
								  res2 += (m1.transpose() * m2).lazy();
							 | 
						|
								  VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
							 | 
						|
								
							 | 
						|
								  if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
							 | 
						|
								  {
							 | 
						|
								    VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 |