You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							350 lines
						
					
					
						
							12 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							350 lines
						
					
					
						
							12 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| // discard stack allocation as that too bypasses malloc | |
| #define EIGEN_STACK_ALLOCATION_LIMIT 0 | |
| #define EIGEN_RUNTIME_NO_MALLOC | |
| #include "main.h" | |
| #include <Eigen/SVD> | |
|  | |
| template<typename MatrixType, int QRPreconditioner> | |
| void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   enum { | |
|     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | |
|     ColsAtCompileTime = MatrixType::ColsAtCompileTime | |
|   }; | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType; | |
|   typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType; | |
|   typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType; | |
|   typedef Matrix<Scalar, ColsAtCompileTime, 1> InputVectorType; | |
| 
 | |
|   MatrixType sigma = MatrixType::Zero(rows,cols); | |
|   sigma.diagonal() = svd.singularValues().template cast<Scalar>(); | |
|   MatrixUType u = svd.matrixU(); | |
|   MatrixVType v = svd.matrixV(); | |
| 
 | |
|   VERIFY_IS_APPROX(m, u * sigma * v.adjoint()); | |
|   VERIFY_IS_UNITARY(u); | |
|   VERIFY_IS_UNITARY(v); | |
| } | |
| 
 | |
| template<typename MatrixType, int QRPreconditioner> | |
| void jacobisvd_compare_to_full(const MatrixType& m, | |
|                                unsigned int computationOptions, | |
|                                const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
|   Index diagSize = (std::min)(rows, cols); | |
| 
 | |
|   JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions); | |
| 
 | |
|   VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues()); | |
|   if(computationOptions & ComputeFullU) | |
|     VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU()); | |
|   if(computationOptions & ComputeThinU) | |
|     VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize)); | |
|   if(computationOptions & ComputeFullV) | |
|     VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV()); | |
|   if(computationOptions & ComputeThinV) | |
|     VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize)); | |
| } | |
| 
 | |
| template<typename MatrixType, int QRPreconditioner> | |
| void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions) | |
| { | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename MatrixType::Index Index; | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   enum { | |
|     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | |
|     ColsAtCompileTime = MatrixType::ColsAtCompileTime | |
|   }; | |
| 
 | |
|   typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType; | |
|   typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType; | |
| 
 | |
|   RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols)); | |
|   JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions); | |
|   SolutionType x = svd.solve(rhs); | |
|   // evaluate normal equation which works also for least-squares solutions | |
|   VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs); | |
| } | |
| 
 | |
| template<typename MatrixType, int QRPreconditioner> | |
| void jacobisvd_test_all_computation_options(const MatrixType& m) | |
| { | |
|   if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols()) | |
|     return; | |
|   JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV); | |
| 
 | |
|   jacobisvd_check_full(m, fullSvd); | |
|   jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV); | |
| 
 | |
|   if(QRPreconditioner == FullPivHouseholderQRPreconditioner) | |
|     return; | |
| 
 | |
|   jacobisvd_compare_to_full(m, ComputeFullU, fullSvd); | |
|   jacobisvd_compare_to_full(m, ComputeFullV, fullSvd); | |
|   jacobisvd_compare_to_full(m, 0, fullSvd); | |
| 
 | |
|   if (MatrixType::ColsAtCompileTime == Dynamic) { | |
|     // thin U/V are only available with dynamic number of columns | |
|     jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd); | |
|     jacobisvd_compare_to_full(m,              ComputeThinV, fullSvd); | |
|     jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd); | |
|     jacobisvd_compare_to_full(m, ComputeThinU             , fullSvd); | |
|     jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd); | |
|     jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV); | |
|     jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV); | |
|     jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV); | |
| 
 | |
|     // test reconstruction | |
|     typedef typename MatrixType::Index Index; | |
|     Index diagSize = (std::min)(m.rows(), m.cols()); | |
|     JacobiSVD<MatrixType, QRPreconditioner> svd(m, ComputeThinU | ComputeThinV); | |
|     VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint()); | |
|   } | |
| } | |
| 
 | |
| template<typename MatrixType> | |
| void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true) | |
| { | |
|   MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a; | |
| 
 | |
|   jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m); | |
|   jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m); | |
|   jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m); | |
|   jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m); | |
| } | |
| 
 | |
| template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename MatrixType::Index Index; | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   enum { | |
|     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | |
|     ColsAtCompileTime = MatrixType::ColsAtCompileTime | |
|   }; | |
| 
 | |
|   typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType; | |
| 
 | |
|   RhsType rhs(rows); | |
| 
 | |
|   JacobiSVD<MatrixType> svd; | |
|   VERIFY_RAISES_ASSERT(svd.matrixU()) | |
|   VERIFY_RAISES_ASSERT(svd.singularValues()) | |
|   VERIFY_RAISES_ASSERT(svd.matrixV()) | |
|   VERIFY_RAISES_ASSERT(svd.solve(rhs)) | |
| 
 | |
|   MatrixType a = MatrixType::Zero(rows, cols); | |
|   a.setZero(); | |
|   svd.compute(a, 0); | |
|   VERIFY_RAISES_ASSERT(svd.matrixU()) | |
|   VERIFY_RAISES_ASSERT(svd.matrixV()) | |
|   svd.singularValues(); | |
|   VERIFY_RAISES_ASSERT(svd.solve(rhs)) | |
| 
 | |
|   if (ColsAtCompileTime == Dynamic) | |
|   { | |
|     svd.compute(a, ComputeThinU); | |
|     svd.matrixU(); | |
|     VERIFY_RAISES_ASSERT(svd.matrixV()) | |
|     VERIFY_RAISES_ASSERT(svd.solve(rhs)) | |
| 
 | |
|     svd.compute(a, ComputeThinV); | |
|     svd.matrixV(); | |
|     VERIFY_RAISES_ASSERT(svd.matrixU()) | |
|     VERIFY_RAISES_ASSERT(svd.solve(rhs)) | |
| 
 | |
|     JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr; | |
|     VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV)) | |
|     VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV)) | |
|     VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV)) | |
|   } | |
|   else | |
|   { | |
|     VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU)) | |
|     VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV)) | |
|   } | |
| } | |
| 
 | |
| template<typename MatrixType> | |
| void jacobisvd_method() | |
| { | |
|   enum { Size = MatrixType::RowsAtCompileTime }; | |
|   typedef typename MatrixType::RealScalar RealScalar; | |
|   typedef Matrix<RealScalar, Size, 1> RealVecType; | |
|   MatrixType m = MatrixType::Identity(); | |
|   VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones()); | |
|   VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU()); | |
|   VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV()); | |
|   VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m); | |
| } | |
| 
 | |
| // work around stupid msvc error when constructing at compile time an expression that involves | |
| // a division by zero, even if the numeric type has floating point | |
| template<typename Scalar> | |
| EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); } | |
| 
 | |
| // workaround aggressive optimization in ICC | |
| template<typename T> EIGEN_DONT_INLINE  T sub(T a, T b) { return a - b; } | |
| 
 | |
| template<typename MatrixType> | |
| void jacobisvd_inf_nan() | |
| { | |
|   // all this function does is verify we don't iterate infinitely on nan/inf values | |
|  | |
|   JacobiSVD<MatrixType> svd; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   Scalar some_inf = Scalar(1) / zero<Scalar>(); | |
|   VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf)); | |
|   svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV); | |
| 
 | |
|   Scalar some_nan = zero<Scalar>() / zero<Scalar>(); | |
|   VERIFY(some_nan != some_nan); | |
|   svd.compute(MatrixType::Constant(10,10,some_nan), ComputeFullU | ComputeFullV); | |
| 
 | |
|   MatrixType m = MatrixType::Zero(10,10); | |
|   m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf; | |
|   svd.compute(m, ComputeFullU | ComputeFullV); | |
| 
 | |
|   m = MatrixType::Zero(10,10); | |
|   m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_nan; | |
|   svd.compute(m, ComputeFullU | ComputeFullV); | |
| } | |
| 
 | |
| // Regression test for bug 286: JacobiSVD loops indefinitely with some | |
| // matrices containing denormal numbers. | |
| void jacobisvd_bug286() | |
| { | |
| #if defined __INTEL_COMPILER | |
| // shut up warning #239: floating point underflow | |
| #pragma warning push | |
| #pragma warning disable 239 | |
| #endif | |
|   Matrix2d M; | |
|   M << -7.90884e-313, -4.94e-324, | |
|                  0, 5.60844e-313; | |
| #if defined __INTEL_COMPILER | |
| #pragma warning pop | |
| #endif | |
|   JacobiSVD<Matrix2d> svd; | |
|   svd.compute(M); // just check we don't loop indefinitely | |
| } | |
| 
 | |
| void jacobisvd_preallocate() | |
| { | |
|   Vector3f v(3.f, 2.f, 1.f); | |
|   MatrixXf m = v.asDiagonal(); | |
| 
 | |
|   internal::set_is_malloc_allowed(false); | |
|   VERIFY_RAISES_ASSERT(VectorXf v(10);) | |
|   JacobiSVD<MatrixXf> svd; | |
|   internal::set_is_malloc_allowed(true); | |
|   svd.compute(m); | |
|   VERIFY_IS_APPROX(svd.singularValues(), v); | |
| 
 | |
|   JacobiSVD<MatrixXf> svd2(3,3); | |
|   internal::set_is_malloc_allowed(false); | |
|   svd2.compute(m); | |
|   internal::set_is_malloc_allowed(true); | |
|   VERIFY_IS_APPROX(svd2.singularValues(), v); | |
|   VERIFY_RAISES_ASSERT(svd2.matrixU()); | |
|   VERIFY_RAISES_ASSERT(svd2.matrixV()); | |
|   svd2.compute(m, ComputeFullU | ComputeFullV); | |
|   VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity()); | |
|   VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity()); | |
|   internal::set_is_malloc_allowed(false); | |
|   svd2.compute(m); | |
|   internal::set_is_malloc_allowed(true); | |
| 
 | |
|   JacobiSVD<MatrixXf> svd3(3,3,ComputeFullU|ComputeFullV); | |
|   internal::set_is_malloc_allowed(false); | |
|   svd2.compute(m); | |
|   internal::set_is_malloc_allowed(true); | |
|   VERIFY_IS_APPROX(svd2.singularValues(), v); | |
|   VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity()); | |
|   VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity()); | |
|   internal::set_is_malloc_allowed(false); | |
|   svd2.compute(m, ComputeFullU|ComputeFullV); | |
|   internal::set_is_malloc_allowed(true); | |
| } | |
| 
 | |
| void test_jacobisvd() | |
| { | |
|   CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) )); | |
|   CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) )); | |
|   CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) )); | |
|   CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) )); | |
| 
 | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     Matrix2cd m; | |
|     m << 0, 1, | |
|          0, 1; | |
|     CALL_SUBTEST_1(( jacobisvd(m, false) )); | |
|     m << 1, 0, | |
|          1, 0; | |
|     CALL_SUBTEST_1(( jacobisvd(m, false) )); | |
| 
 | |
|     Matrix2d n; | |
|     n << 0, 0, | |
|          0, 0; | |
|     CALL_SUBTEST_2(( jacobisvd(n, false) )); | |
|     n << 0, 0, | |
|          0, 1; | |
|     CALL_SUBTEST_2(( jacobisvd(n, false) )); | |
|      | |
|     CALL_SUBTEST_3(( jacobisvd<Matrix3f>() )); | |
|     CALL_SUBTEST_4(( jacobisvd<Matrix4d>() )); | |
|     CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() )); | |
|     CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) )); | |
| 
 | |
|     int r = internal::random<int>(1, 30), | |
|         c = internal::random<int>(1, 30); | |
|     CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) )); | |
|     CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) )); | |
|     (void) r; | |
|     (void) c; | |
| 
 | |
|     // Test on inf/nan matrix | |
|     CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() ); | |
|   } | |
| 
 | |
|   CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) )); | |
|   CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) )); | |
| 
 | |
|   // test matrixbase method | |
|   CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() )); | |
|   CALL_SUBTEST_3(( jacobisvd_method<Matrix3f>() )); | |
| 
 | |
|   // Test problem size constructors | |
|   CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) ); | |
| 
 | |
|   // Check that preallocation avoids subsequent mallocs | |
|   CALL_SUBTEST_9( jacobisvd_preallocate() ); | |
| 
 | |
|   // Regression check for bug 286 | |
|   CALL_SUBTEST_2( jacobisvd_bug286() ); | |
| }
 |