You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							132 lines
						
					
					
						
							5.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							132 lines
						
					
					
						
							5.2 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. Eigen itself is part of the KDE project. | |
| // | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <Eigen/Array> | |
| #include <Eigen/QR> | |
|  | |
| template<typename Derived1, typename Derived2> | |
| bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = precision<typename Derived1::RealScalar>()) | |
| { | |
|   return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon | |
|                           * std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff())); | |
| } | |
| 
 | |
| template<typename MatrixType> void product(const MatrixType& m) | |
| { | |
|   /* this test covers the following files: | |
|      Identity.h Product.h | |
|   */ | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::FloatingPoint FloatingPoint; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType; | |
|   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType; | |
|   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, | |
|                          MatrixType::Options^RowMajor> OtherMajorMatrixType; | |
| 
 | |
|   int rows = m.rows(); | |
|   int cols = m.cols(); | |
| 
 | |
|   // this test relies a lot on Random.h, and there's not much more that we can do | |
|   // to test it, hence I consider that we will have tested Random.h | |
|   MatrixType m1 = MatrixType::Random(rows, cols), | |
|              m2 = MatrixType::Random(rows, cols), | |
|              m3(rows, cols), | |
|              mzero = MatrixType::Zero(rows, cols); | |
|   RowSquareMatrixType | |
|              identity = RowSquareMatrixType::Identity(rows, rows), | |
|              square = RowSquareMatrixType::Random(rows, rows), | |
|              res = RowSquareMatrixType::Random(rows, rows); | |
|   ColSquareMatrixType | |
|              square2 = ColSquareMatrixType::Random(cols, cols), | |
|              res2 = ColSquareMatrixType::Random(cols, cols); | |
|   RowVectorType v1 = RowVectorType::Random(rows), | |
|              v2 = RowVectorType::Random(rows), | |
|              vzero = RowVectorType::Zero(rows); | |
|   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); | |
|   OtherMajorMatrixType tm1 = m1; | |
| 
 | |
|   Scalar s1 = ei_random<Scalar>(); | |
| 
 | |
|   int r = ei_random<int>(0, rows-1), | |
|       c = ei_random<int>(0, cols-1); | |
| 
 | |
|   // begin testing Product.h: only associativity for now | |
|   // (we use Transpose.h but this doesn't count as a test for it) | |
|  | |
|   VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2)); | |
|   m3 = m1; | |
|   m3 *= m1.transpose() * m2; | |
|   VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2)); | |
|   VERIFY_IS_APPROX(m3,                      m1.lazy() * (m1.transpose()*m2)); | |
| 
 | |
|   // continue testing Product.h: distributivity | |
|   VERIFY_IS_APPROX(square*(m1 + m2),        square*m1+square*m2); | |
|   VERIFY_IS_APPROX(square*(m1 - m2),        square*m1-square*m2); | |
| 
 | |
|   // continue testing Product.h: compatibility with ScalarMultiple.h | |
|   VERIFY_IS_APPROX(s1*(square*m1),          (s1*square)*m1); | |
|   VERIFY_IS_APPROX(s1*(square*m1),          square*(m1*s1)); | |
| 
 | |
|   // again, test operator() to check const-qualification | |
|   s1 += (square.lazy() * m1)(r,c); | |
| 
 | |
|   // test Product.h together with Identity.h | |
|   VERIFY_IS_APPROX(v1,                      identity*v1); | |
|   VERIFY_IS_APPROX(v1.transpose(),          v1.transpose() * identity); | |
|   // again, test operator() to check const-qualification | |
|   VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c)); | |
| 
 | |
|   if (rows!=cols) | |
|      VERIFY_RAISES_ASSERT(m3 = m1*m1); | |
| 
 | |
|   // test the previous tests were not screwed up because operator* returns 0 | |
|   // (we use the more accurate default epsilon) | |
|   if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1) | |
|   { | |
|     VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1)); | |
|   } | |
| 
 | |
|   // test optimized operator+= path | |
|   res = square; | |
|   res += (m1 * m2.transpose()).lazy(); | |
|   VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); | |
|   if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1) | |
|   { | |
|     VERIFY(areNotApprox(res,square + m2 * m1.transpose())); | |
|   } | |
|   vcres = vc2; | |
|   vcres += (m1.transpose() * v1).lazy(); | |
|   VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1); | |
|   tm1 = m1; | |
|   VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1); | |
|   VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1); | |
| 
 | |
|   // test submatrix and matrix/vector product | |
|   for (int i=0; i<rows; ++i) | |
|     res.row(i) = m1.row(i) * m2.transpose(); | |
|   VERIFY_IS_APPROX(res, m1 * m2.transpose()); | |
|   // the other way round: | |
|   for (int i=0; i<rows; ++i) | |
|     res.col(i) = m1 * m2.transpose().col(i); | |
|   VERIFY_IS_APPROX(res, m1 * m2.transpose()); | |
| 
 | |
|   res2 = square2; | |
|   res2 += (m1.transpose() * m2).lazy(); | |
|   VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2); | |
| 
 | |
|   if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1) | |
|   { | |
|     VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1)); | |
|   } | |
| } | |
| 
 |