You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							122 lines
						
					
					
						
							4.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							122 lines
						
					
					
						
							4.0 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. Eigen itself is part of the KDE project. | |
| // | |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <Eigen/LU> | |
|  | |
| template<typename Derived> | |
| void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m) | |
| { | |
|   typedef typename Derived::RealScalar RealScalar; | |
|   for(int a = 0; a < 3*(m.rows()+m.cols()); a++) | |
|   { | |
|     RealScalar d = Eigen::ei_random<RealScalar>(-1,1); | |
|     int i = Eigen::ei_random<int>(0,m.rows()-1); // i is a random row number | |
|     int j; | |
|     do { | |
|       j = Eigen::ei_random<int>(0,m.rows()-1); | |
|     } while (i==j); // j is another one (must be different) | |
|     m.row(i) += d * m.row(j); | |
| 
 | |
|     i = Eigen::ei_random<int>(0,m.cols()-1); // i is a random column number | |
|     do { | |
|       j = Eigen::ei_random<int>(0,m.cols()-1); | |
|     } while (i==j); // j is another one (must be different) | |
|     m.col(i) += d * m.col(j); | |
|   } | |
| } | |
| 
 | |
| template<typename MatrixType> void lu_non_invertible() | |
| { | |
|   /* this test covers the following files: | |
|      LU.h | |
|   */ | |
|   // NOTE there seems to be a problem with too small sizes -- could easily lie in the doSomeRankPreservingOperations function | |
|   int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200); | |
|   int rank = ei_random<int>(1, std::min(rows, cols)-1); | |
| 
 | |
|   MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1); | |
|   m1 = MatrixType::Random(rows,cols); | |
|   if(rows <= cols) | |
|     for(int i = rank; i < rows; i++) m1.row(i).setZero(); | |
|   else | |
|     for(int i = rank; i < cols; i++) m1.col(i).setZero(); | |
|   doSomeRankPreservingOperations(m1); | |
| 
 | |
|   LU<MatrixType> lu(m1); | |
|   typename LU<MatrixType>::KernelResultType m1kernel = lu.kernel(); | |
|   typename LU<MatrixType>::ImageResultType m1image = lu.image(); | |
| 
 | |
|   VERIFY(rank == lu.rank()); | |
|   VERIFY(cols - lu.rank() == lu.dimensionOfKernel()); | |
|   VERIFY(!lu.isInjective()); | |
|   VERIFY(!lu.isInvertible()); | |
|   VERIFY(lu.isSurjective() == (lu.rank() == rows)); | |
|   VERIFY((m1 * m1kernel).isMuchSmallerThan(m1)); | |
|   VERIFY(m1image.lu().rank() == rank); | |
|   MatrixType sidebyside(m1.rows(), m1.cols() + m1image.cols()); | |
|   sidebyside << m1, m1image; | |
|   VERIFY(sidebyside.lu().rank() == rank); | |
|   m2 = MatrixType::Random(cols,cols2); | |
|   m3 = m1*m2; | |
|   m2 = MatrixType::Random(cols,cols2); | |
|   lu.solve(m3, &m2); | |
|   VERIFY_IS_APPROX(m3, m1*m2); | |
|   /* solve now always returns true | |
|   m3 = MatrixType::Random(rows,cols2); | |
|   VERIFY(!lu.solve(m3, &m2)); | |
|   */ | |
| } | |
| 
 | |
| template<typename MatrixType> void lu_invertible() | |
| { | |
|   /* this test covers the following files: | |
|      LU.h | |
|   */ | |
|   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | |
|   int size = ei_random<int>(10,200); | |
| 
 | |
|   MatrixType m1(size, size), m2(size, size), m3(size, size); | |
|   m1 = MatrixType::Random(size,size); | |
| 
 | |
|   if (ei_is_same_type<RealScalar,float>::ret) | |
|   { | |
|     // let's build a matrix more stable to inverse | |
|     MatrixType a = MatrixType::Random(size,size*2); | |
|     m1 += a * a.adjoint(); | |
|   } | |
| 
 | |
|   LU<MatrixType> lu(m1); | |
|   VERIFY(0 == lu.dimensionOfKernel()); | |
|   VERIFY(size == lu.rank()); | |
|   VERIFY(lu.isInjective()); | |
|   VERIFY(lu.isSurjective()); | |
|   VERIFY(lu.isInvertible()); | |
|   VERIFY(lu.image().lu().isInvertible()); | |
|   m3 = MatrixType::Random(size,size); | |
|   lu.solve(m3, &m2); | |
|   VERIFY_IS_APPROX(m3, m1*m2); | |
|   VERIFY_IS_APPROX(m2, lu.inverse()*m3); | |
|   m3 = MatrixType::Random(size,size); | |
|   VERIFY(lu.solve(m3, &m2)); | |
| } | |
| 
 | |
| void test_eigen2_lu() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( lu_non_invertible<MatrixXf>() ); | |
|     CALL_SUBTEST_2( lu_non_invertible<MatrixXd>() ); | |
|     CALL_SUBTEST_3( lu_non_invertible<MatrixXcf>() ); | |
|     CALL_SUBTEST_4( lu_non_invertible<MatrixXcd>() ); | |
|     CALL_SUBTEST_1( lu_invertible<MatrixXf>() ); | |
|     CALL_SUBTEST_2( lu_invertible<MatrixXd>() ); | |
|     CALL_SUBTEST_3( lu_invertible<MatrixXcf>() ); | |
|     CALL_SUBTEST_4( lu_invertible<MatrixXcd>() ); | |
|   } | |
| }
 |