You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							158 lines
						
					
					
						
							5.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							158 lines
						
					
					
						
							5.8 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. Eigen itself is part of the KDE project. | |
| // | |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <functional> | |
| #include <Eigen/Array> | |
|  | |
| using namespace std; | |
| 
 | |
| template<typename Scalar> struct AddIfNull { | |
|     const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;} | |
|     enum { Cost = NumTraits<Scalar>::AddCost }; | |
| }; | |
| 
 | |
| template<typename MatrixType> void cwiseops(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | |
| 
 | |
|   int rows = m.rows(); | |
|   int cols = m.cols(); | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), | |
|              m2 = MatrixType::Random(rows, cols), | |
|              m3(rows, cols), | |
|              m4(rows, cols), | |
|              mzero = MatrixType::Zero(rows, cols), | |
|              mones = MatrixType::Ones(rows, cols), | |
|              identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | |
|                               ::Identity(rows, rows), | |
|              square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); | |
|   VectorType v1 = VectorType::Random(rows), | |
|              v2 = VectorType::Random(rows), | |
|              vzero = VectorType::Zero(rows), | |
|              vones = VectorType::Ones(rows), | |
|              v3(rows); | |
| 
 | |
|   int r = ei_random<int>(0, rows-1), | |
|       c = ei_random<int>(0, cols-1); | |
|    | |
|   Scalar s1 = ei_random<Scalar>(); | |
|    | |
|   // test Zero, Ones, Constant, and the set* variants | |
|   m3 = MatrixType::Constant(rows, cols, s1); | |
|   for (int j=0; j<cols; ++j) | |
|     for (int i=0; i<rows; ++i) | |
|     { | |
|       VERIFY_IS_APPROX(mzero(i,j), Scalar(0)); | |
|       VERIFY_IS_APPROX(mones(i,j), Scalar(1)); | |
|       VERIFY_IS_APPROX(m3(i,j), s1); | |
|     } | |
|   VERIFY(mzero.isZero()); | |
|   VERIFY(mones.isOnes()); | |
|   VERIFY(m3.isConstant(s1)); | |
|   VERIFY(identity.isIdentity()); | |
|   VERIFY_IS_APPROX(m4.setConstant(s1), m3); | |
|   VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3); | |
|   VERIFY_IS_APPROX(m4.setZero(), mzero); | |
|   VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero); | |
|   VERIFY_IS_APPROX(m4.setOnes(), mones); | |
|   VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones); | |
|   m4.fill(s1); | |
|   VERIFY_IS_APPROX(m4, m3); | |
|    | |
|   VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1)); | |
|   VERIFY_IS_APPROX(v3.setZero(rows), vzero); | |
|   VERIFY_IS_APPROX(v3.setOnes(rows), vones); | |
| 
 | |
|   m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones); | |
| 
 | |
|   VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2()); | |
|   VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); | |
|   VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube()); | |
| 
 | |
|   VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1)); | |
|   VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1)); | |
|   m3 = m1; m3.cwise() += 1; | |
|   VERIFY_IS_APPROX(m1 + mones, m3); | |
|   m3 = m1; m3.cwise() -= 1; | |
|   VERIFY_IS_APPROX(m1 - mones, m3); | |
| 
 | |
|   VERIFY_IS_APPROX(m2, m2.cwise() * mones); | |
|   VERIFY_IS_APPROX(m1.cwise() * m2,  m2.cwise() * m1); | |
|   m3 = m1; | |
|   m3.cwise() *= m2; | |
|   VERIFY_IS_APPROX(m3, m1.cwise() * m2); | |
|    | |
|   VERIFY_IS_APPROX(mones,    m2.cwise()/m2); | |
|   if(NumTraits<Scalar>::HasFloatingPoint) | |
|   { | |
|     VERIFY_IS_APPROX(m1.cwise() / m2,    m1.cwise() * (m2.cwise().inverse())); | |
|     m3 = m1.cwise().abs().cwise().sqrt(); | |
|     VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs()); | |
|     VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs()); | |
|     VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs()); | |
| 
 | |
|     VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); | |
|     m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1); | |
|     VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse()); | |
|     m3 = m1.cwise().abs(); | |
|     VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt()); | |
|      | |
| //     VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos()); | |
|     VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square()); | |
|     m3 = m1; | |
|     m3.cwise() /= m2; | |
|     VERIFY_IS_APPROX(m3, m1.cwise() / m2); | |
|   } | |
| 
 | |
|   // check min | |
|   VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) ); | |
|   VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 ); | |
|   VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones ); | |
| 
 | |
|   // check max | |
|   VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) ); | |
|   VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 ); | |
|   VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones ); | |
|    | |
|   VERIFY( (m1.cwise() == m1).all() ); | |
|   VERIFY( (m1.cwise() != m2).any() ); | |
|   VERIFY(!(m1.cwise() == (m1+mones)).any() ); | |
|   if (rows*cols>1) | |
|   { | |
|     m3 = m1; | |
|     m3(r,c) += 1; | |
|     VERIFY( (m1.cwise() == m3).any() ); | |
|     VERIFY( !(m1.cwise() == m3).all() ); | |
|   } | |
|   VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() ); | |
|   VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() ); | |
|   VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() ); | |
|   VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() ); | |
| 
 | |
|   VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() ); | |
|   VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() ); | |
|   VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() ); | |
| } | |
| 
 | |
| void test_eigen2_cwiseop() | |
| { | |
|   for(int i = 0; i < g_repeat ; i++) { | |
|     CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( cwiseops(Matrix4d()) ); | |
|     CALL_SUBTEST_3( cwiseops(MatrixXf(3, 3)) ); | |
|     CALL_SUBTEST_3( cwiseops(MatrixXf(22, 22)) ); | |
|     CALL_SUBTEST_4( cwiseops(MatrixXi(8, 12)) ); | |
|     CALL_SUBTEST_5( cwiseops(MatrixXd(20, 20)) ); | |
|   } | |
| }
 |