You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							128 lines
						
					
					
						
							4.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							128 lines
						
					
					
						
							4.0 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <iostream> | |
|  | |
| using namespace std; | |
| 
 | |
| template<typename MatrixType> void reverse(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   // this test relies a lot on Random.h, and there's not much more that we can do | |
|   // to test it, hence I consider that we will have tested Random.h | |
|   MatrixType m1 = MatrixType::Random(rows, cols); | |
|   VectorType v1 = VectorType::Random(rows); | |
| 
 | |
|   MatrixType m1_r = m1.reverse(); | |
|   // Verify that MatrixBase::reverse() works | |
|   for ( int i = 0; i < rows; i++ ) { | |
|     for ( int j = 0; j < cols; j++ ) { | |
|       VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j)); | |
|     } | |
|   } | |
| 
 | |
|   Reverse<MatrixType> m1_rd(m1); | |
|   // Verify that a Reverse default (in both directions) of an expression works | |
|   for ( int i = 0; i < rows; i++ ) { | |
|     for ( int j = 0; j < cols; j++ ) { | |
|       VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j)); | |
|     } | |
|   } | |
| 
 | |
|   Reverse<MatrixType, BothDirections> m1_rb(m1); | |
|   // Verify that a Reverse in both directions of an expression works | |
|   for ( int i = 0; i < rows; i++ ) { | |
|     for ( int j = 0; j < cols; j++ ) { | |
|       VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j)); | |
|     } | |
|   } | |
| 
 | |
|   Reverse<MatrixType, Vertical> m1_rv(m1); | |
|   // Verify that a Reverse in the vertical directions of an expression works | |
|   for ( int i = 0; i < rows; i++ ) { | |
|     for ( int j = 0; j < cols; j++ ) { | |
|       VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j)); | |
|     } | |
|   } | |
| 
 | |
|   Reverse<MatrixType, Horizontal> m1_rh(m1); | |
|   // Verify that a Reverse in the horizontal directions of an expression works | |
|   for ( int i = 0; i < rows; i++ ) { | |
|     for ( int j = 0; j < cols; j++ ) { | |
|       VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j)); | |
|     } | |
|   } | |
| 
 | |
|   VectorType v1_r = v1.reverse(); | |
|   // Verify that a VectorType::reverse() of an expression works | |
|   for ( int i = 0; i < rows; i++ ) { | |
|     VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i)); | |
|   } | |
| 
 | |
|   MatrixType m1_cr = m1.colwise().reverse(); | |
|   // Verify that PartialRedux::reverse() works (for colwise()) | |
|   for ( int i = 0; i < rows; i++ ) { | |
|     for ( int j = 0; j < cols; j++ ) { | |
|       VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j)); | |
|     } | |
|   } | |
| 
 | |
|   MatrixType m1_rr = m1.rowwise().reverse(); | |
|   // Verify that PartialRedux::reverse() works (for rowwise()) | |
|   for ( int i = 0; i < rows; i++ ) { | |
|     for ( int j = 0; j < cols; j++ ) { | |
|       VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j)); | |
|     } | |
|   } | |
| 
 | |
|   Scalar x = internal::random<Scalar>(); | |
| 
 | |
|   Index r = internal::random<Index>(0, rows-1), | |
|         c = internal::random<Index>(0, cols-1); | |
| 
 | |
|   m1.reverse()(r, c) = x; | |
|   VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c)); | |
| 
 | |
|   /* | |
|   m1.colwise().reverse()(r, c) = x; | |
|   VERIFY_IS_APPROX(x, m1(rows - 1 - r, c)); | |
|  | |
|   m1.rowwise().reverse()(r, c) = x; | |
|   VERIFY_IS_APPROX(x, m1(r, cols - 1 - c)); | |
|   */ | |
| } | |
| 
 | |
| void test_array_reverse() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( reverse(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( reverse(Matrix2f()) ); | |
|     CALL_SUBTEST_3( reverse(Matrix4f()) ); | |
|     CALL_SUBTEST_4( reverse(Matrix4d()) ); | |
|     CALL_SUBTEST_5( reverse(MatrixXcf(3, 3)) ); | |
|     CALL_SUBTEST_6( reverse(MatrixXi(6, 3)) ); | |
|     CALL_SUBTEST_7( reverse(MatrixXcd(20, 20)) ); | |
|     CALL_SUBTEST_8( reverse(Matrix<float, 100, 100>()) ); | |
|     CALL_SUBTEST_9( reverse(Matrix<float,Dynamic,Dynamic,RowMajor>(6,3)) ); | |
|   } | |
| #ifdef EIGEN_TEST_PART_3 | |
|   Vector4f x; x << 1, 2, 3, 4; | |
|   Vector4f y; y << 4, 3, 2, 1; | |
|   VERIFY(x.reverse()[1] == 3); | |
|   VERIFY(x.reverse() == y); | |
| #endif | |
| }
 |