You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							114 lines
						
					
					
						
							2.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							114 lines
						
					
					
						
							2.8 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
							 | 
						|
								
							 | 
						|
								#include <stdio.h>
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <unsupported/Eigen/NumericalDiff>
							 | 
						|
								    
							 | 
						|
								// Generic functor
							 | 
						|
								template<typename _Scalar, int NX=Dynamic, int NY=Dynamic>
							 | 
						|
								struct Functor
							 | 
						|
								{
							 | 
						|
								  typedef _Scalar Scalar;
							 | 
						|
								  enum {
							 | 
						|
								    InputsAtCompileTime = NX,
							 | 
						|
								    ValuesAtCompileTime = NY
							 | 
						|
								  };
							 | 
						|
								  typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
							 | 
						|
								  typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
							 | 
						|
								  typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
							 | 
						|
								  
							 | 
						|
								  int m_inputs, m_values;
							 | 
						|
								  
							 | 
						|
								  Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
							 | 
						|
								  Functor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
							 | 
						|
								  
							 | 
						|
								  int inputs() const { return m_inputs; }
							 | 
						|
								  int values() const { return m_values; }
							 | 
						|
								
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								struct my_functor : Functor<double>
							 | 
						|
								{
							 | 
						|
								    my_functor(void): Functor<double>(3,15) {}
							 | 
						|
								    int operator()(const VectorXd &x, VectorXd &fvec) const
							 | 
						|
								    {
							 | 
						|
								        double tmp1, tmp2, tmp3;
							 | 
						|
								        double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
							 | 
						|
								            3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
							 | 
						|
								
							 | 
						|
								        for (int i = 0; i < values(); i++)
							 | 
						|
								        {
							 | 
						|
								            tmp1 = i+1;
							 | 
						|
								            tmp2 = 16 - i - 1;
							 | 
						|
								            tmp3 = (i>=8)? tmp2 : tmp1;
							 | 
						|
								            fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
							 | 
						|
								        }
							 | 
						|
								        return 0;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    int actual_df(const VectorXd &x, MatrixXd &fjac) const
							 | 
						|
								    {
							 | 
						|
								        double tmp1, tmp2, tmp3, tmp4;
							 | 
						|
								        for (int i = 0; i < values(); i++)
							 | 
						|
								        {
							 | 
						|
								            tmp1 = i+1;
							 | 
						|
								            tmp2 = 16 - i - 1;
							 | 
						|
								            tmp3 = (i>=8)? tmp2 : tmp1;
							 | 
						|
								            tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4 = tmp4*tmp4;
							 | 
						|
								            fjac(i,0) = -1;
							 | 
						|
								            fjac(i,1) = tmp1*tmp2/tmp4;
							 | 
						|
								            fjac(i,2) = tmp1*tmp3/tmp4;
							 | 
						|
								        }
							 | 
						|
								        return 0;
							 | 
						|
								    }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								void test_forward()
							 | 
						|
								{
							 | 
						|
								    VectorXd x(3);
							 | 
						|
								    MatrixXd jac(15,3);
							 | 
						|
								    MatrixXd actual_jac(15,3);
							 | 
						|
								    my_functor functor;
							 | 
						|
								
							 | 
						|
								    x << 0.082, 1.13, 2.35;
							 | 
						|
								
							 | 
						|
								    // real one 
							 | 
						|
								    functor.actual_df(x, actual_jac);
							 | 
						|
								//    std::cout << actual_jac << std::endl << std::endl;
							 | 
						|
								
							 | 
						|
								    // using NumericalDiff
							 | 
						|
								    NumericalDiff<my_functor> numDiff(functor);
							 | 
						|
								    numDiff.df(x, jac);
							 | 
						|
								//    std::cout << jac << std::endl;
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(jac, actual_jac);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_central()
							 | 
						|
								{
							 | 
						|
								    VectorXd x(3);
							 | 
						|
								    MatrixXd jac(15,3);
							 | 
						|
								    MatrixXd actual_jac(15,3);
							 | 
						|
								    my_functor functor;
							 | 
						|
								
							 | 
						|
								    x << 0.082, 1.13, 2.35;
							 | 
						|
								
							 | 
						|
								    // real one 
							 | 
						|
								    functor.actual_df(x, actual_jac);
							 | 
						|
								
							 | 
						|
								    // using NumericalDiff
							 | 
						|
								    NumericalDiff<my_functor,Central> numDiff(functor);
							 | 
						|
								    numDiff.df(x, jac);
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(jac, actual_jac);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_NumericalDiff()
							 | 
						|
								{
							 | 
						|
								    CALL_SUBTEST(test_forward());
							 | 
						|
								    CALL_SUBTEST(test_central());
							 | 
						|
								}
							 |