You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							90 lines
						
					
					
						
							2.5 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							90 lines
						
					
					
						
							2.5 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								#include "sparse.h"
							 | 
						|
								#include <Eigen/SparseQR>
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								template<typename MatrixType,typename DenseMat>
							 | 
						|
								int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 300)
							 | 
						|
								{
							 | 
						|
								  eigen_assert(maxRows >= maxCols);
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  int rows = internal::random<int>(1,maxRows);
							 | 
						|
								  int cols = internal::random<int>(1,rows);
							 | 
						|
								  double density = (std::max)(8./(rows*cols), 0.01);
							 | 
						|
								  
							 | 
						|
								  A.resize(rows,rows);
							 | 
						|
								  dA.resize(rows,rows);
							 | 
						|
								  initSparse<Scalar>(density, dA, A,ForceNonZeroDiag);
							 | 
						|
								  A.makeCompressed();
							 | 
						|
								  int nop = internal::random<int>(0, internal::random<double>(0,1) > 0.5 ? cols/2 : 0);
							 | 
						|
								  for(int k=0; k<nop; ++k)
							 | 
						|
								  {
							 | 
						|
								    int j0 = internal::random<int>(0,cols-1);
							 | 
						|
								    int j1 = internal::random<int>(0,cols-1);
							 | 
						|
								    Scalar s = internal::random<Scalar>();
							 | 
						|
								    A.col(j0)  = s * A.col(j1);
							 | 
						|
								    dA.col(j0) = s * dA.col(j1);
							 | 
						|
								  }
							 | 
						|
								  return rows;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Scalar> void test_sparseqr_scalar()
							 | 
						|
								{
							 | 
						|
								  typedef SparseMatrix<Scalar,ColMajor> MatrixType; 
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMat;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> DenseVector;
							 | 
						|
								  MatrixType A;
							 | 
						|
								  DenseMat dA;
							 | 
						|
								  DenseVector refX,x,b; 
							 | 
						|
								  SparseQR<MatrixType, AMDOrdering<int> > solver; 
							 | 
						|
								  generate_sparse_rectangular_problem(A,dA);
							 | 
						|
								  
							 | 
						|
								  int n = A.cols();
							 | 
						|
								  b = DenseVector::Random(n);
							 | 
						|
								  solver.compute(A);
							 | 
						|
								  if (solver.info() != Success)
							 | 
						|
								  {
							 | 
						|
								    std::cerr << "sparse QR factorization failed\n";
							 | 
						|
								    exit(0);
							 | 
						|
								    return;
							 | 
						|
								  }
							 | 
						|
								  x = solver.solve(b);
							 | 
						|
								  if (solver.info() != Success)
							 | 
						|
								  {
							 | 
						|
								    std::cerr << "sparse QR factorization failed\n";
							 | 
						|
								    exit(0);
							 | 
						|
								    return;
							 | 
						|
								  } 
							 | 
						|
								  //Compare with a dense QR solver
							 | 
						|
								  ColPivHouseholderQR<DenseMat> dqr(dA);
							 | 
						|
								  refX = dqr.solve(b);
							 | 
						|
								  
							 | 
						|
								  VERIFY_IS_EQUAL(dqr.rank(), solver.rank());
							 | 
						|
								  
							 | 
						|
								  if(solver.rank()<A.cols())
							 | 
						|
								    VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() );
							 | 
						|
								  else
							 | 
						|
								    VERIFY_IS_APPROX(x, refX);
							 | 
						|
								
							 | 
						|
								  // Compute explicitly the matrix Q
							 | 
						|
								  MatrixType Q, QtQ, idM;
							 | 
						|
								  Q = solver.matrixQ();
							 | 
						|
								  //Check  ||Q' * Q - I ||
							 | 
						|
								  QtQ = Q * Q.adjoint();
							 | 
						|
								  idM.resize(Q.rows(), Q.rows()); idM.setIdentity();
							 | 
						|
								  VERIFY(idM.isApprox(QtQ));
							 | 
						|
								}
							 | 
						|
								void test_sparseqr()
							 | 
						|
								{
							 | 
						|
								  for(int i=0; i<g_repeat; ++i)
							 | 
						|
								  {
							 | 
						|
								    CALL_SUBTEST_1(test_sparseqr_scalar<double>());
							 | 
						|
								    CALL_SUBTEST_2(test_sparseqr_scalar<std::complex<double> >());
							 | 
						|
								  }
							 | 
						|
								}
							 |