You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							179 lines
						
					
					
						
							6.7 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							179 lines
						
					
					
						
							6.7 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								// this hack is needed to make this file compiles with -pedantic (gcc)
							 | 
						|
								#ifdef __GNUC__
							 | 
						|
								#define throw(X)
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#ifdef __INTEL_COMPILER
							 | 
						|
								  // disable "warning #76: argument to macro is empty" produced by the above hack
							 | 
						|
								  #pragma warning disable 76
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								// discard stack allocation as that too bypasses malloc
							 | 
						|
								#define EIGEN_STACK_ALLOCATION_LIMIT 0
							 | 
						|
								// any heap allocation will raise an assert
							 | 
						|
								#define EIGEN_NO_MALLOC
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/Cholesky>
							 | 
						|
								#include <Eigen/Eigenvalues>
							 | 
						|
								#include <Eigen/LU>
							 | 
						|
								#include <Eigen/QR>
							 | 
						|
								#include <Eigen/SVD>
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void nomalloc(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  /* this test check no dynamic memory allocation are issued with fixed-size matrices
							 | 
						|
								  */
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols),
							 | 
						|
								             m2 = MatrixType::Random(rows, cols),
							 | 
						|
								             m3(rows, cols);
							 | 
						|
								
							 | 
						|
								  Scalar s1 = internal::random<Scalar>();
							 | 
						|
								
							 | 
						|
								  Index r = internal::random<Index>(0, rows-1),
							 | 
						|
								        c = internal::random<Index>(0, cols-1);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2);
							 | 
						|
								  VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
							 | 
						|
								  VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix());
							 | 
						|
								  VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
							 | 
						|
								  
							 | 
						|
								  m2.col(0).noalias() = m1 * m1.col(0);
							 | 
						|
								  m2.col(0).noalias() -= m1.adjoint() * m1.col(0);
							 | 
						|
								  m2.col(0).noalias() -= m1 * m1.row(0).adjoint();
							 | 
						|
								  m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint();
							 | 
						|
								
							 | 
						|
								  m2.row(0).noalias() = m1.row(0) * m1;
							 | 
						|
								  m2.row(0).noalias() -= m1.row(0) * m1.adjoint();
							 | 
						|
								  m2.row(0).noalias() -= m1.col(0).adjoint() * m1;
							 | 
						|
								  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint();
							 | 
						|
								  VERIFY_IS_APPROX(m2,m2);
							 | 
						|
								  
							 | 
						|
								  m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0);
							 | 
						|
								  m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0);
							 | 
						|
								  m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint();
							 | 
						|
								  m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint();
							 | 
						|
								
							 | 
						|
								  m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>();
							 | 
						|
								  m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>();
							 | 
						|
								  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>();
							 | 
						|
								  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>();
							 | 
						|
								  VERIFY_IS_APPROX(m2,m2);
							 | 
						|
								  
							 | 
						|
								  m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0);
							 | 
						|
								  m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0);
							 | 
						|
								  m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint();
							 | 
						|
								  m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint();
							 | 
						|
								
							 | 
						|
								  m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>();
							 | 
						|
								  m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>();
							 | 
						|
								  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>();
							 | 
						|
								  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>();
							 | 
						|
								  VERIFY_IS_APPROX(m2,m2);
							 | 
						|
								  
							 | 
						|
								  m2.template selfadjointView<Lower>().rankUpdate(m1.col(0),-1);
							 | 
						|
								  m2.template selfadjointView<Lower>().rankUpdate(m1.row(0),-1);
							 | 
						|
								
							 | 
						|
								  // The following fancy matrix-matrix products are not safe yet regarding static allocation
							 | 
						|
								//   m1 += m1.template triangularView<Upper>() * m2.col(;
							 | 
						|
								//   m1.template selfadjointView<Lower>().rankUpdate(m2);
							 | 
						|
								//   m1 += m1.template triangularView<Upper>() * m2;
							 | 
						|
								//   m1 += m1.template selfadjointView<Lower>() * m2;
							 | 
						|
								//   VERIFY_IS_APPROX(m1,m1);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Scalar>
							 | 
						|
								void ctms_decompositions()
							 | 
						|
								{
							 | 
						|
								  const int maxSize = 16;
							 | 
						|
								  const int size    = 12;
							 | 
						|
								
							 | 
						|
								  typedef Eigen::Matrix<Scalar,
							 | 
						|
								                        Eigen::Dynamic, Eigen::Dynamic,
							 | 
						|
								                        0,
							 | 
						|
								                        maxSize, maxSize> Matrix;
							 | 
						|
								
							 | 
						|
								  typedef Eigen::Matrix<Scalar,
							 | 
						|
								                        Eigen::Dynamic, 1,
							 | 
						|
								                        0,
							 | 
						|
								                        maxSize, 1> Vector;
							 | 
						|
								
							 | 
						|
								  typedef Eigen::Matrix<std::complex<Scalar>,
							 | 
						|
								                        Eigen::Dynamic, Eigen::Dynamic,
							 | 
						|
								                        0,
							 | 
						|
								                        maxSize, maxSize> ComplexMatrix;
							 | 
						|
								
							 | 
						|
								  const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size));
							 | 
						|
								  Matrix X(size,size);
							 | 
						|
								  const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
							 | 
						|
								  const Matrix saA = A.adjoint() * A;
							 | 
						|
								  const Vector b(Vector::Random(size));
							 | 
						|
								  Vector x(size);
							 | 
						|
								
							 | 
						|
								  // Cholesky module
							 | 
						|
								  Eigen::LLT<Matrix>  LLT;  LLT.compute(A);
							 | 
						|
								  X = LLT.solve(B);
							 | 
						|
								  x = LLT.solve(b);
							 | 
						|
								  Eigen::LDLT<Matrix> LDLT; LDLT.compute(A);
							 | 
						|
								  X = LDLT.solve(B);
							 | 
						|
								  x = LDLT.solve(b);
							 | 
						|
								
							 | 
						|
								  // Eigenvalues module
							 | 
						|
								  Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp;        hessDecomp.compute(complexA);
							 | 
						|
								  Eigen::ComplexSchur<ComplexMatrix>            cSchur(size);      cSchur.compute(complexA);
							 | 
						|
								  Eigen::ComplexEigenSolver<ComplexMatrix>      cEigSolver;        cEigSolver.compute(complexA);
							 | 
						|
								  Eigen::EigenSolver<Matrix>                    eigSolver;         eigSolver.compute(A);
							 | 
						|
								  Eigen::SelfAdjointEigenSolver<Matrix>         saEigSolver(size); saEigSolver.compute(saA);
							 | 
						|
								  Eigen::Tridiagonalization<Matrix>             tridiag;           tridiag.compute(saA);
							 | 
						|
								
							 | 
						|
								  // LU module
							 | 
						|
								  Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A);
							 | 
						|
								  X = ppLU.solve(B);
							 | 
						|
								  x = ppLU.solve(b);
							 | 
						|
								  Eigen::FullPivLU<Matrix>    fpLU; fpLU.compute(A);
							 | 
						|
								  X = fpLU.solve(B);
							 | 
						|
								  x = fpLU.solve(b);
							 | 
						|
								
							 | 
						|
								  // QR module
							 | 
						|
								  Eigen::HouseholderQR<Matrix>        hQR;  hQR.compute(A);
							 | 
						|
								  X = hQR.solve(B);
							 | 
						|
								  x = hQR.solve(b);
							 | 
						|
								  Eigen::ColPivHouseholderQR<Matrix>  cpQR; cpQR.compute(A);
							 | 
						|
								  X = cpQR.solve(B);
							 | 
						|
								  x = cpQR.solve(b);
							 | 
						|
								  Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A);
							 | 
						|
								  // FIXME X = fpQR.solve(B);
							 | 
						|
								  x = fpQR.solve(b);
							 | 
						|
								
							 | 
						|
								  // SVD module
							 | 
						|
								  Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A, ComputeFullU | ComputeFullV);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_nomalloc()
							 | 
						|
								{
							 | 
						|
								  // check that our operator new is indeed called:
							 | 
						|
								  VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3)));
							 | 
						|
								  CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) );
							 | 
						|
								  CALL_SUBTEST_2(nomalloc(Matrix4d()) );
							 | 
						|
								  CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) );
							 | 
						|
								  
							 | 
						|
								  // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms)
							 | 
						|
								  CALL_SUBTEST_4(ctms_decompositions<float>());
							 | 
						|
								
							 | 
						|
								}
							 |