You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							215 lines
						
					
					
						
							6.5 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							215 lines
						
					
					
						
							6.5 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <unsupported/Eigen/Polynomials> | |
| #include <iostream> | |
| #include <algorithm> | |
|  | |
| using namespace std; | |
| 
 | |
| namespace Eigen { | |
| namespace internal { | |
| template<int Size> | |
| struct increment_if_fixed_size | |
| { | |
|   enum { | |
|     ret = (Size == Dynamic) ? Dynamic : Size+1 | |
|   }; | |
| }; | |
| } | |
| } | |
| 
 | |
| 
 | |
| template<int Deg, typename POLYNOMIAL, typename SOLVER> | |
| bool aux_evalSolver( const POLYNOMIAL& pols, SOLVER& psolve ) | |
| { | |
|   typedef typename POLYNOMIAL::Index Index; | |
|   typedef typename POLYNOMIAL::Scalar Scalar; | |
| 
 | |
|   typedef typename SOLVER::RootsType    RootsType; | |
|   typedef Matrix<Scalar,Deg,1>          EvalRootsType; | |
| 
 | |
|   const Index deg = pols.size()-1; | |
| 
 | |
|   psolve.compute( pols ); | |
|   const RootsType& roots( psolve.roots() ); | |
|   EvalRootsType evr( deg ); | |
|   for( int i=0; i<roots.size(); ++i ){ | |
|     evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } | |
| 
 | |
|   bool evalToZero = evr.isZero( test_precision<Scalar>() ); | |
|   if( !evalToZero ) | |
|   { | |
|     cerr << "WRONG root: " << endl; | |
|     cerr << "Polynomial: " << pols.transpose() << endl; | |
|     cerr << "Roots found: " << roots.transpose() << endl; | |
|     cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl; | |
|     cerr << endl; | |
|   } | |
| 
 | |
|   std::vector<Scalar> rootModuli( roots.size() ); | |
|   Map< EvalRootsType > aux( &rootModuli[0], roots.size() ); | |
|   aux = roots.array().abs(); | |
|   std::sort( rootModuli.begin(), rootModuli.end() ); | |
|   bool distinctModuli=true; | |
|   for( size_t i=1; i<rootModuli.size() && distinctModuli; ++i ) | |
|   { | |
|     if( internal::isApprox( rootModuli[i], rootModuli[i-1] ) ){ | |
|       distinctModuli = false; } | |
|   } | |
|   VERIFY( evalToZero || !distinctModuli ); | |
| 
 | |
|   return distinctModuli; | |
| } | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| template<int Deg, typename POLYNOMIAL> | |
| void evalSolver( const POLYNOMIAL& pols ) | |
| { | |
|   typedef typename POLYNOMIAL::Scalar Scalar; | |
| 
 | |
|   typedef PolynomialSolver<Scalar, Deg >              PolynomialSolverType; | |
| 
 | |
|   PolynomialSolverType psolve; | |
|   aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ); | |
| } | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| template< int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS > | |
| void evalSolverSugarFunction( const POLYNOMIAL& pols, const ROOTS& roots, const REAL_ROOTS& real_roots ) | |
| { | |
|   using std::sqrt; | |
|   typedef typename POLYNOMIAL::Scalar Scalar; | |
| 
 | |
|   typedef PolynomialSolver<Scalar, Deg >              PolynomialSolverType; | |
| 
 | |
|   PolynomialSolverType psolve; | |
|   if( aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ) ) | |
|   { | |
|     //It is supposed that | |
|     // 1) the roots found are correct | |
|     // 2) the roots have distinct moduli | |
|  | |
|     typedef typename POLYNOMIAL::Scalar                 Scalar; | |
|     typedef typename REAL_ROOTS::Scalar                 Real; | |
|     typedef PolynomialSolver<Scalar, Deg >              PolynomialSolverType; | |
| 
 | |
|     //Test realRoots | |
|     std::vector< Real > calc_realRoots; | |
|     psolve.realRoots( calc_realRoots ); | |
|     VERIFY( calc_realRoots.size() == (size_t)real_roots.size() ); | |
| 
 | |
|     const Scalar psPrec = sqrt( test_precision<Scalar>() ); | |
| 
 | |
|     for( size_t i=0; i<calc_realRoots.size(); ++i ) | |
|     { | |
|       bool found = false; | |
|       for( size_t j=0; j<calc_realRoots.size()&& !found; ++j ) | |
|       { | |
|         if( internal::isApprox( calc_realRoots[i], real_roots[j] ), psPrec ){ | |
|           found = true; } | |
|       } | |
|       VERIFY( found ); | |
|     } | |
| 
 | |
|     //Test greatestRoot | |
|     VERIFY( internal::isApprox( roots.array().abs().maxCoeff(), | |
|           abs( psolve.greatestRoot() ), psPrec ) ); | |
| 
 | |
|     //Test smallestRoot | |
|     VERIFY( internal::isApprox( roots.array().abs().minCoeff(), | |
|           abs( psolve.smallestRoot() ), psPrec ) ); | |
| 
 | |
|     bool hasRealRoot; | |
|     //Test absGreatestRealRoot | |
|     Real r = psolve.absGreatestRealRoot( hasRealRoot ); | |
|     VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); | |
|     if( hasRealRoot ){ | |
|       VERIFY( internal::isApprox( real_roots.array().abs().maxCoeff(), abs(r), psPrec ) );  } | |
| 
 | |
|     //Test absSmallestRealRoot | |
|     r = psolve.absSmallestRealRoot( hasRealRoot ); | |
|     VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); | |
|     if( hasRealRoot ){ | |
|       VERIFY( internal::isApprox( real_roots.array().abs().minCoeff(), abs( r ), psPrec ) ); } | |
| 
 | |
|     //Test greatestRealRoot | |
|     r = psolve.greatestRealRoot( hasRealRoot ); | |
|     VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); | |
|     if( hasRealRoot ){ | |
|       VERIFY( internal::isApprox( real_roots.array().maxCoeff(), r, psPrec ) ); } | |
| 
 | |
|     //Test smallestRealRoot | |
|     r = psolve.smallestRealRoot( hasRealRoot ); | |
|     VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); | |
|     if( hasRealRoot ){ | |
|     VERIFY( internal::isApprox( real_roots.array().minCoeff(), r, psPrec ) ); } | |
|   } | |
| } | |
| 
 | |
| 
 | |
| template<typename _Scalar, int _Deg> | |
| void polynomialsolver(int deg) | |
| { | |
|   typedef internal::increment_if_fixed_size<_Deg>            Dim; | |
|   typedef Matrix<_Scalar,Dim::ret,1>                  PolynomialType; | |
|   typedef Matrix<_Scalar,_Deg,1>                      EvalRootsType; | |
| 
 | |
|   cout << "Standard cases" << endl; | |
|   PolynomialType pols = PolynomialType::Random(deg+1); | |
|   evalSolver<_Deg,PolynomialType>( pols ); | |
| 
 | |
|   cout << "Hard cases" << endl; | |
|   _Scalar multipleRoot = internal::random<_Scalar>(); | |
|   EvalRootsType allRoots = EvalRootsType::Constant(deg,multipleRoot); | |
|   roots_to_monicPolynomial( allRoots, pols ); | |
|   evalSolver<_Deg,PolynomialType>( pols ); | |
| 
 | |
|   cout << "Test sugar" << endl; | |
|   EvalRootsType realRoots = EvalRootsType::Random(deg); | |
|   roots_to_monicPolynomial( realRoots, pols ); | |
|   evalSolverSugarFunction<_Deg>( | |
|       pols, | |
|       realRoots.template cast < | |
|                     std::complex< | |
|                          typename NumTraits<_Scalar>::Real | |
|                          > | |
|                     >(), | |
|       realRoots ); | |
| } | |
| 
 | |
| void test_polynomialsolver() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) | |
|   { | |
|     CALL_SUBTEST_1( (polynomialsolver<float,1>(1)) ); | |
|     CALL_SUBTEST_2( (polynomialsolver<double,2>(2)) ); | |
|     CALL_SUBTEST_3( (polynomialsolver<double,3>(3)) ); | |
|     CALL_SUBTEST_4( (polynomialsolver<float,4>(4)) ); | |
|     CALL_SUBTEST_5( (polynomialsolver<double,5>(5)) ); | |
|     CALL_SUBTEST_6( (polynomialsolver<float,6>(6)) ); | |
|     CALL_SUBTEST_7( (polynomialsolver<float,7>(7)) ); | |
|     CALL_SUBTEST_8( (polynomialsolver<double,8>(8)) ); | |
| 
 | |
|     CALL_SUBTEST_9( (polynomialsolver<float,Dynamic>( | |
|             internal::random<int>(9,13) | |
|             )) ); | |
|     CALL_SUBTEST_10((polynomialsolver<double,Dynamic>( | |
|             internal::random<int>(9,13) | |
|             )) ); | |
|   } | |
| }
 |