You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							93 lines
						
					
					
						
							3.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							93 lines
						
					
					
						
							3.2 KiB
						
					
					
				
								/* FCTP, Fixed-Charge Transportation Problem */
							 | 
						|
								
							 | 
						|
								/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
							 | 
						|
								
							 | 
						|
								/* The Fixed-Charge Transportation Problem (FCTP) is obtained from
							 | 
						|
								   classical transportation problem by imposing a fixed cost on each
							 | 
						|
								   transportation link if there is a positive flow on that link. */
							 | 
						|
								
							 | 
						|
								param m, integer, > 0;
							 | 
						|
								/* number of sources */
							 | 
						|
								
							 | 
						|
								param n, integer, > 0;
							 | 
						|
								/* number of customers */
							 | 
						|
								
							 | 
						|
								set I := 1..m;
							 | 
						|
								/* set of sources */
							 | 
						|
								
							 | 
						|
								set J := 1..n;
							 | 
						|
								/* set of customers */
							 | 
						|
								
							 | 
						|
								param supply{i in I}, >= 0;
							 | 
						|
								/* supply at source i */
							 | 
						|
								
							 | 
						|
								param demand{j in J}, >= 0;
							 | 
						|
								/* demand at customer j */
							 | 
						|
								
							 | 
						|
								param varcost{i in I, j in J}, >= 0;
							 | 
						|
								/* variable cost (a cost per one unit shipped from i to j) */
							 | 
						|
								
							 | 
						|
								param fixcost{i in I, j in J}, >= 0;
							 | 
						|
								/* fixed cost (a cost for shipping any amount from i to j) */
							 | 
						|
								
							 | 
						|
								var x{i in I, j in J}, >= 0;
							 | 
						|
								/* amount shipped from source i to customer j */
							 | 
						|
								
							 | 
						|
								s.t. f{i in I}: sum{j in J} x[i,j] = supply[i];
							 | 
						|
								/* observe supply at source i */
							 | 
						|
								
							 | 
						|
								s.t. g{j in J}: sum{i in I} x[i,j] = demand[j];
							 | 
						|
								/* satisfy demand at customer j */
							 | 
						|
								
							 | 
						|
								var y{i in I, j in J}, binary;
							 | 
						|
								/* y[i,j] = 1 means some amount is shipped from i to j */
							 | 
						|
								
							 | 
						|
								s.t. h{i in I, j in J}: x[i,j] <= min(supply[i], demand[j]) * y[i,j];
							 | 
						|
								/* if y[i,j] is 0, force x[i,j] to be 0 (may note that supply[i] and
							 | 
						|
								   demand[j] are implicit upper bounds for x[i,j] as follows from the
							 | 
						|
								   constraints f[i] and g[j]) */
							 | 
						|
								
							 | 
						|
								minimize cost: sum{i in I, j in J} varcost[i,j] * x[i,j] +
							 | 
						|
								               sum{i in I, j in J} fixcost[i,j] * y[i,j];
							 | 
						|
								/* total transportation costs */
							 | 
						|
								
							 | 
						|
								data;
							 | 
						|
								
							 | 
						|
								/* These data correspond to the instance bal8x12 from [Balinski]. */
							 | 
						|
								
							 | 
						|
								/* The optimal solution is 471.55 */
							 | 
						|
								
							 | 
						|
								param m := 8;
							 | 
						|
								
							 | 
						|
								param n := 12;
							 | 
						|
								
							 | 
						|
								param supply := 1 15.00,  2 20.00,  3 45.00,  4 35.00,
							 | 
						|
								                5 25.00,  6 35.00,  7 10.00,  8 25.00;
							 | 
						|
								
							 | 
						|
								param demand := 1 20.00,  2 15.00,  3 20.00,  4 15.00,
							 | 
						|
								                5  5.00,  6 20.00,  7 30.00,  8 10.00,
							 | 
						|
								                9 35.00, 10 25.00, 11 10.00, 12  5.00;
							 | 
						|
								
							 | 
						|
								param varcost
							 | 
						|
								      :   1    2    3    4    5    6    7    8    9    10   11   12  :=
							 | 
						|
								      1  0.69 0.64 0.71 0.79 1.70 2.83 2.02 5.64 5.94 5.94 5.94 7.68
							 | 
						|
								      2  1.01 0.75 0.88 0.59 1.50 2.63 2.26 5.64 5.85 5.62 5.85 4.94
							 | 
						|
								      3  1.05 1.06 1.08 0.64 1.22 2.37 1.66 5.64 5.91 5.62 5.91 4.94
							 | 
						|
								      4  1.94 1.50 1.56 1.22 1.98 1.98 1.36 6.99 6.99 6.99 6.99 3.68
							 | 
						|
								      5  1.61 1.40 1.61 1.33 1.68 2.83 1.54 4.26 4.26 4.26 4.26 2.99
							 | 
						|
								      6  5.29 5.94 6.08 5.29 5.96 6.77 5.08 0.31 0.21 0.17 0.31 1.53
							 | 
						|
								      7  5.29 5.94 6.08 5.29 5.96 6.77 5.08 0.55 0.35 0.40 0.19 1.53
							 | 
						|
								      8  5.29 6.08 6.08 5.29 5.96 6.45 5.08 2.43 2.30 2.33 1.81 2.50 ;
							 | 
						|
								
							 | 
						|
								param fixcost
							 | 
						|
								      :   1    2    3    4    5    6    7    8    9    10   11   12  :=
							 | 
						|
								      1  11.0 16.0 18.0 17.0 10.0 20.0 17.0 13.0 15.0 12.0 14.0 14.0
							 | 
						|
								      2  14.0 17.0 17.0 13.0 15.0 13.0 16.0 11.0 20.0 11.0 15.0 10.0
							 | 
						|
								      3  12.0 13.0 20.0 17.0 13.0 15.0 16.0 13.0 12.0 13.0 10.0 18.0
							 | 
						|
								      4  16.0 19.0 16.0 11.0 15.0 12.0 18.0 12.0 18.0 13.0 13.0 14.0
							 | 
						|
								      5  19.0 18.0 15.0 16.0 12.0 14.0 20.0 19.0 11.0 17.0 16.0 18.0
							 | 
						|
								      6  13.0 20.0 20.0 17.0 15.0 12.0 14.0 11.0 12.0 19.0 15.0 16.0
							 | 
						|
								      7  11.0 12.0 15.0 10.0 17.0 11.0 11.0 16.0 10.0 18.0 17.0 12.0
							 | 
						|
								      8  17.0 10.0 20.0 12.0 17.0 20.0 16.0 15.0 10.0 12.0 16.0 18.0 ;
							 | 
						|
								
							 | 
						|
								end;
							 |