596 lines
19 KiB
596 lines
19 KiB
\* Any Wolfram elementary CA in 6D eucl. Neumann CA grid emulator generator *\
|
|
|
|
\* Written and converted to *LP format by NASZVADI, Peter, 2016,2017 *\
|
|
\* <vuk@cs.elte.hu> *\
|
|
|
|
\* Standalone version; GMPL version is in wolfra6d.mod *\
|
|
|
|
\* This model looks up for a subset of vertices in 6D euclyd. grid, *\
|
|
\* which has the following properties: *\
|
|
\* 1. each vertex' coordinate pairs' difference is at most 1 *\
|
|
\* 2. contains the vertices in the main diagonal of the 6d space *\
|
|
\* 3. connecting with directed graph edges from all selected vertices *\
|
|
\* to all selected ones with greater coordinate sums with *\
|
|
\* Hamming-distance 1, the following in-out edge numbers are *\
|
|
\* allowed: (3,6), (1,2), (2,3), (1,2), (4,1), (3,1); according to *\
|
|
\* the mod 6 sum of the coordinate values *\
|
|
\* 4. Only vertices of the unit cube's with {0,1} coordinates are *\
|
|
\* calculated, but the other cells could be obtained via shifting. *\
|
|
\* Assume that the grid is a 6dim. cellular automaton grid with Neumann- *\
|
|
\* -neighbourhood, now construct an outer-totalistic rule that emulates *\
|
|
\* W110 cellular automaton on the selected vertices: *\
|
|
\* Suppose that the 1D W110 cellspace cells are denoted with signed *\
|
|
\* integers. Every 1D cell is assigned to (at most "6 over 2") selected *\
|
|
\* vertices where each coordinate sums are the same with the integer *\
|
|
\* assigned to the origin cell in the domain, they must have the same *\
|
|
\* value. Rule-110 means that cell's value is being changed only when its *\
|
|
\* neighbours are: (1,1,1), (1,0,1), (0,0,1), other cells remain unchanged. *\
|
|
\* Let's denote the default cellstate with "2" in the 6D automaton, and *\
|
|
\* the remaining 2 states with "0" and "1" respectively, which correspond *\
|
|
\* with the states in W110. The selected vertices must be 0 or 1 of course, *\
|
|
\* and the others are "2". *\
|
|
\* Now, the transition rule for emulating W110 is the following: *\
|
|
\* (x),{1,1,1,1,1,1,1,1,1,2,2,2}->(1-x), x!=2, *\
|
|
\* (x),{1,1,1,2,2,2,2,2,2,2,2,2}->(1-x), x!=2, *\
|
|
\* (x),{1,1,1,1,2,2,2,2,2,2,2,2}->(1-x), x!=2, *\
|
|
\* (x),{1,1,1,1,1,2,2,2,2,2,2,2}->(1-x), x!=2, *\
|
|
\* (1),{0,0,0,1,1,1,1,1,1,2,2,2}->(0), *\
|
|
\* (1),{0,1,1,2,2,2,2,2,2,2,2,2}->(0), *\
|
|
\* (1),{0,0,1,1,1,2,2,2,2,2,2,2}->(0), *\
|
|
\* (1),{0,0,0,0,1,2,2,2,2,2,2,2}->(0), *\
|
|
\* (1),{0,0,0,1,2,2,2,2,2,2,2,2}->(0); *\
|
|
\* notation: (old state),{old neighbours - all permutations}->(new state) *\
|
|
\* Other states won't change between two generations. And is known that W110 *\
|
|
\* is Turing-complete. So there is a universal CA rule in 6+D eucl. gridS *\
|
|
\* Result is in x****** binary variables (total 44 among the 64) *\
|
|
|
|
Minimize
|
|
obj: x000000 +x000001 +x000010 +x000011 +x000100 +x000101 +x000110 +x000111
|
|
+x001000 +x001001 +x001010 +x001011 +x001100 +x001101 +x001110 +x001111
|
|
+x010000 +x010001 +x010010 +x010011 +x010100 +x010101 +x010110 +x010111
|
|
+x011000 +x011001 +x011010 +x011011 +x011100 +x011101 +x011110 +x011111
|
|
+x100000 +x100001 +x100010 +x100011 +x100100 +x100101 +x100110 +x100111
|
|
+x101000 +x101001 +x101010 +x101011 +x101100 +x101101 +x101110 +x101111
|
|
+x110000 +x110001 +x110010 +x110011 +x110100 +x110101 +x110110 +x110111
|
|
+x111000 +x111001 +x111010 +x111011 +x111100 +x111101 +x111110 +x111111
|
|
Subject To
|
|
x000000 = 1
|
|
x111111 = 1
|
|
x111110 -x111101 >= 0
|
|
x111101 -x111011 >= 0
|
|
x111011 -x110111 >= 0
|
|
x110111 -x101111 >= 0
|
|
x101111 -x011111 >= 0
|
|
dn000000 -dn111111 = 0
|
|
up000000 -up111111 = 0
|
|
cup000000:
|
|
x000001 +x000010 +x000100 +x001000 +x010000 +x100000 -up000000 = 0
|
|
cup000001:
|
|
x000011 +x000101 +x001001 +x010001 +x100001 -up000001 = 0
|
|
cup000010:
|
|
x000011 +x000110 +x001010 +x010010 +x100010 -up000010 = 0
|
|
cup000011:
|
|
x000111 +x001011 +x010011 +x100011 -up000011 = 0
|
|
cup000100:
|
|
x000101 +x000110 +x001100 +x010100 +x100100 -up000100 = 0
|
|
cup000101:
|
|
x000111 +x001101 +x010101 +x100101 -up000101 = 0
|
|
cup000110:
|
|
x000111 +x001110 +x010110 +x100110 -up000110 = 0
|
|
cup000111:
|
|
x001111 +x010111 +x100111 -up000111 = 0
|
|
cup001000:
|
|
x001001 +x001010 +x001100 +x011000 +x101000 -up001000 = 0
|
|
cup001001:
|
|
x001011 +x001101 +x011001 +x101001 -up001001 = 0
|
|
cup001010:
|
|
x001011 +x001110 +x011010 +x101010 -up001010 = 0
|
|
cup001011:
|
|
x001111 +x011011 +x101011 -up001011 = 0
|
|
cup001100:
|
|
x001101 +x001110 +x011100 +x101100 -up001100 = 0
|
|
cup001101:
|
|
x001111 +x011101 +x101101 -up001101 = 0
|
|
cup001110:
|
|
x001111 +x011110 +x101110 -up001110 = 0
|
|
cup001111:
|
|
x011111 +x101111 -up001111 = 0
|
|
cup010000:
|
|
x010001 +x010010 +x010100 +x011000 +x110000 -up010000 = 0
|
|
cup010001:
|
|
x010011 +x010101 +x011001 +x110001 -up010001 = 0
|
|
cup010010:
|
|
x010011 +x010110 +x011010 +x110010 -up010010 = 0
|
|
cup010011:
|
|
x010111 +x011011 +x110011 -up010011 = 0
|
|
cup010100:
|
|
x010101 +x010110 +x011100 +x110100 -up010100 = 0
|
|
cup010101:
|
|
x010111 +x011101 +x110101 -up010101 = 0
|
|
cup010110:
|
|
x010111 +x011110 +x110110 -up010110 = 0
|
|
cup010111:
|
|
x011111 +x110111 -up010111 = 0
|
|
cup011000:
|
|
x011001 +x011010 +x011100 +x111000 -up011000 = 0
|
|
cup011001:
|
|
x011011 +x011101 +x111001 -up011001 = 0
|
|
cup011010:
|
|
x011011 +x011110 +x111010 -up011010 = 0
|
|
cup011011:
|
|
x011111 +x111011 -up011011 = 0
|
|
cup011100:
|
|
x011101 +x011110 +x111100 -up011100 = 0
|
|
cup011101:
|
|
x011111 +x111101 -up011101 = 0
|
|
cup011110:
|
|
x011111 +x111110 -up011110 = 0
|
|
cup011111:
|
|
x111111 -up011111 = 0
|
|
cup100000:
|
|
x100001 +x100010 +x100100 +x101000 +x110000 -up100000 = 0
|
|
cup100001:
|
|
x100011 +x100101 +x101001 +x110001 -up100001 = 0
|
|
cup100010:
|
|
x100011 +x100110 +x101010 +x110010 -up100010 = 0
|
|
cup100011:
|
|
x100111 +x101011 +x110011 -up100011 = 0
|
|
cup100100:
|
|
x100101 +x100110 +x101100 +x110100 -up100100 = 0
|
|
cup100101:
|
|
x100111 +x101101 +x110101 -up100101 = 0
|
|
cup100110:
|
|
x100111 +x101110 +x110110 -up100110 = 0
|
|
cup100111:
|
|
x101111 +x110111 -up100111 = 0
|
|
cup101000:
|
|
x101001 +x101010 +x101100 +x111000 -up101000 = 0
|
|
cup101001:
|
|
x101011 +x101101 +x111001 -up101001 = 0
|
|
cup101010:
|
|
x101011 +x101110 +x111010 -up101010 = 0
|
|
cup101011:
|
|
x101111 +x111011 -up101011 = 0
|
|
cup101100:
|
|
x101101 +x101110 +x111100 -up101100 = 0
|
|
cup101101:
|
|
x101111 +x111101 -up101101 = 0
|
|
cup101110:
|
|
x101111 +x111110 -up101110 = 0
|
|
cup101111:
|
|
x111111 -up101111 = 0
|
|
cup110000:
|
|
x110001 +x110010 +x110100 +x111000 -up110000 = 0
|
|
cup110001:
|
|
x110011 +x110101 +x111001 -up110001 = 0
|
|
cup110010:
|
|
x110011 +x110110 +x111010 -up110010 = 0
|
|
cup110011:
|
|
x110111 +x111011 -up110011 = 0
|
|
cup110100:
|
|
x110101 +x110110 +x111100 -up110100 = 0
|
|
cup110101:
|
|
x110111 +x111101 -up110101 = 0
|
|
cup110110:
|
|
x110111 +x111110 -up110110 = 0
|
|
cup110111:
|
|
x111111 -up110111 = 0
|
|
cup111000:
|
|
x111001 +x111010 +x111100 -up111000 = 0
|
|
cup111001:
|
|
x111011 +x111101 -up111001 = 0
|
|
cup111010:
|
|
x111011 +x111110 -up111010 = 0
|
|
cup111011:
|
|
x111111 -up111011 = 0
|
|
cup111100:
|
|
x111101 +x111110 -up111100 = 0
|
|
cup111101:
|
|
x111111 -up111101 = 0
|
|
cup111110:
|
|
x111111 -up111110 = 0
|
|
cdn000001:
|
|
x000000 -dn000001 = 0
|
|
cdn000010:
|
|
x000000 -dn000010 = 0
|
|
cdn000011:
|
|
x000001 +x000010 -dn000011 = 0
|
|
cdn000100:
|
|
x000000 -dn000100 = 0
|
|
cdn000101:
|
|
x000001 +x000100 -dn000101 = 0
|
|
cdn000110:
|
|
x000010 +x000100 -dn000110 = 0
|
|
cdn000111:
|
|
x000011 +x000101 +x000110 -dn000111 = 0
|
|
cdn001000:
|
|
x000000 -dn001000 = 0
|
|
cdn001001:
|
|
x000001 +x001000 -dn001001 = 0
|
|
cdn001010:
|
|
x000010 +x001000 -dn001010 = 0
|
|
cdn001011:
|
|
x000011 +x001001 +x001010 -dn001011 = 0
|
|
cdn001100:
|
|
x000100 +x001000 -dn001100 = 0
|
|
cdn001101:
|
|
x000101 +x001001 +x001100 -dn001101 = 0
|
|
cdn001110:
|
|
x000110 +x001010 +x001100 -dn001110 = 0
|
|
cdn001111:
|
|
x000111 +x001011 +x001101 +x001110 -dn001111 = 0
|
|
cdn010000:
|
|
x000000 -dn010000 = 0
|
|
cdn010001:
|
|
x000001 +x010000 -dn010001 = 0
|
|
cdn010010:
|
|
x000010 +x010000 -dn010010 = 0
|
|
cdn010011:
|
|
x000011 +x010001 +x010010 -dn010011 = 0
|
|
cdn010100:
|
|
x000100 +x010000 -dn010100 = 0
|
|
cdn010101:
|
|
x000101 +x010001 +x010100 -dn010101 = 0
|
|
cdn010110:
|
|
x000110 +x010010 +x010100 -dn010110 = 0
|
|
cdn010111:
|
|
x000111 +x010011 +x010101 +x010110 -dn010111 = 0
|
|
cdn011000:
|
|
x001000 +x010000 -dn011000 = 0
|
|
cdn011001:
|
|
x001001 +x010001 +x011000 -dn011001 = 0
|
|
cdn011010:
|
|
x001010 +x010010 +x011000 -dn011010 = 0
|
|
cdn011011:
|
|
x001011 +x010011 +x011001 +x011010 -dn011011 = 0
|
|
cdn011100:
|
|
x001100 +x010100 +x011000 -dn011100 = 0
|
|
cdn011101:
|
|
x001101 +x010101 +x011001 +x011100 -dn011101 = 0
|
|
cdn011110:
|
|
x001110 +x010110 +x011010 +x011100 -dn011110 = 0
|
|
cdn011111:
|
|
x001111 +x010111 +x011011 +x011101 +x011110 -dn011111 = 0
|
|
cdn100000:
|
|
x000000 -dn100000 = 0
|
|
cdn100001:
|
|
x000001 +x100000 -dn100001 = 0
|
|
cdn100010:
|
|
x000010 +x100000 -dn100010 = 0
|
|
cdn100011:
|
|
x000011 +x100001 +x100010 -dn100011 = 0
|
|
cdn100100:
|
|
x000100 +x100000 -dn100100 = 0
|
|
cdn100101:
|
|
x000101 +x100001 +x100100 -dn100101 = 0
|
|
cdn100110:
|
|
x000110 +x100010 +x100100 -dn100110 = 0
|
|
cdn100111:
|
|
x000111 +x100011 +x100101 +x100110 -dn100111 = 0
|
|
cdn101000:
|
|
x001000 +x100000 -dn101000 = 0
|
|
cdn101001:
|
|
x001001 +x100001 +x101000 -dn101001 = 0
|
|
cdn101010:
|
|
x001010 +x100010 +x101000 -dn101010 = 0
|
|
cdn101011:
|
|
x001011 +x100011 +x101001 +x101010 -dn101011 = 0
|
|
cdn101100:
|
|
x001100 +x100100 +x101000 -dn101100 = 0
|
|
cdn101101:
|
|
x001101 +x100101 +x101001 +x101100 -dn101101 = 0
|
|
cdn101110:
|
|
x001110 +x100110 +x101010 +x101100 -dn101110 = 0
|
|
cdn101111:
|
|
x001111 +x100111 +x101011 +x101101 +x101110 -dn101111 = 0
|
|
cdn110000:
|
|
x010000 +x100000 -dn110000 = 0
|
|
cdn110001:
|
|
x010001 +x100001 +x110000 -dn110001 = 0
|
|
cdn110010:
|
|
x010010 +x100010 +x110000 -dn110010 = 0
|
|
cdn110011:
|
|
x010011 +x100011 +x110001 +x110010 -dn110011 = 0
|
|
cdn110100:
|
|
x010100 +x100100 +x110000 -dn110100 = 0
|
|
cdn110101:
|
|
x010101 +x100101 +x110001 +x110100 -dn110101 = 0
|
|
cdn110110:
|
|
x010110 +x100110 +x110010 +x110100 -dn110110 = 0
|
|
cdn110111:
|
|
x010111 +x100111 +x110011 +x110101 +x110110 -dn110111 = 0
|
|
cdn111000:
|
|
x011000 +x101000 +x110000 -dn111000 = 0
|
|
cdn111001:
|
|
x011001 +x101001 +x110001 +x111000 -dn111001 = 0
|
|
cdn111010:
|
|
x011010 +x101010 +x110010 +x111000 -dn111010 = 0
|
|
cdn111011:
|
|
x011011 +x101011 +x110011 +x111001 +x111010 -dn111011 = 0
|
|
cdn111100:
|
|
x011100 +x101100 +x110100 +x111000 -dn111100 = 0
|
|
cdn111101:
|
|
x011101 +x101101 +x110101 +x111001 +x111100 -dn111101 = 0
|
|
cdn111110:
|
|
x011110 +x101110 +x110110 +x111010 +x111100 -dn111110 = 0
|
|
cdn111111:
|
|
x011111 +x101111 +x110111 +x111011 +x111101 +x111110 -dn111111 = 0
|
|
up000000 -6 x000000 >= 0
|
|
up000000 +64 x000000 <= 70
|
|
up000001 -2 x000001 >= 0
|
|
up000001 +64 x000001 <= 66
|
|
up000010 -2 x000010 >= 0
|
|
up000010 +64 x000010 <= 66
|
|
up000011 -3 x000011 >= 0
|
|
up000011 +64 x000011 <= 67
|
|
up000100 -2 x000100 >= 0
|
|
up000100 +64 x000100 <= 66
|
|
up000101 -3 x000101 >= 0
|
|
up000101 +64 x000101 <= 67
|
|
up000110 -3 x000110 >= 0
|
|
up000110 +64 x000110 <= 67
|
|
up000111 -2 x000111 >= 0
|
|
up000111 +64 x000111 <= 66
|
|
up001000 -2 x001000 >= 0
|
|
up001000 +64 x001000 <= 66
|
|
up001001 -3 x001001 >= 0
|
|
up001001 +64 x001001 <= 67
|
|
up001010 -3 x001010 >= 0
|
|
up001010 +64 x001010 <= 67
|
|
up001011 -2 x001011 >= 0
|
|
up001011 +64 x001011 <= 66
|
|
up001100 -3 x001100 >= 0
|
|
up001100 +64 x001100 <= 67
|
|
up001101 -2 x001101 >= 0
|
|
up001101 +64 x001101 <= 66
|
|
up001110 -2 x001110 >= 0
|
|
up001110 +64 x001110 <= 66
|
|
up001111 -1 x001111 >= 0
|
|
up001111 +64 x001111 <= 65
|
|
up010000 -2 x010000 >= 0
|
|
up010000 +64 x010000 <= 66
|
|
up010001 -3 x010001 >= 0
|
|
up010001 +64 x010001 <= 67
|
|
up010010 -3 x010010 >= 0
|
|
up010010 +64 x010010 <= 67
|
|
up010011 -2 x010011 >= 0
|
|
up010011 +64 x010011 <= 66
|
|
up010100 -3 x010100 >= 0
|
|
up010100 +64 x010100 <= 67
|
|
up010101 -2 x010101 >= 0
|
|
up010101 +64 x010101 <= 66
|
|
up010110 -2 x010110 >= 0
|
|
up010110 +64 x010110 <= 66
|
|
up010111 -1 x010111 >= 0
|
|
up010111 +64 x010111 <= 65
|
|
up011000 -3 x011000 >= 0
|
|
up011000 +64 x011000 <= 67
|
|
up011001 -2 x011001 >= 0
|
|
up011001 +64 x011001 <= 66
|
|
up011010 -2 x011010 >= 0
|
|
up011010 +64 x011010 <= 66
|
|
up011011 -1 x011011 >= 0
|
|
up011011 +64 x011011 <= 65
|
|
up011100 -2 x011100 >= 0
|
|
up011100 +64 x011100 <= 66
|
|
up011101 -1 x011101 >= 0
|
|
up011101 +64 x011101 <= 65
|
|
up011110 -1 x011110 >= 0
|
|
up011110 +64 x011110 <= 65
|
|
up011111 -1 x011111 >= 0
|
|
up011111 +64 x011111 <= 65
|
|
up100000 -2 x100000 >= 0
|
|
up100000 +64 x100000 <= 66
|
|
up100001 -3 x100001 >= 0
|
|
up100001 +64 x100001 <= 67
|
|
up100010 -3 x100010 >= 0
|
|
up100010 +64 x100010 <= 67
|
|
up100011 -2 x100011 >= 0
|
|
up100011 +64 x100011 <= 66
|
|
up100100 -3 x100100 >= 0
|
|
up100100 +64 x100100 <= 67
|
|
up100101 -2 x100101 >= 0
|
|
up100101 +64 x100101 <= 66
|
|
up100110 -2 x100110 >= 0
|
|
up100110 +64 x100110 <= 66
|
|
up100111 -1 x100111 >= 0
|
|
up100111 +64 x100111 <= 65
|
|
up101000 -3 x101000 >= 0
|
|
up101000 +64 x101000 <= 67
|
|
up101001 -2 x101001 >= 0
|
|
up101001 +64 x101001 <= 66
|
|
up101010 -2 x101010 >= 0
|
|
up101010 +64 x101010 <= 66
|
|
up101011 -1 x101011 >= 0
|
|
up101011 +64 x101011 <= 65
|
|
up101100 -2 x101100 >= 0
|
|
up101100 +64 x101100 <= 66
|
|
up101101 -1 x101101 >= 0
|
|
up101101 +64 x101101 <= 65
|
|
up101110 -1 x101110 >= 0
|
|
up101110 +64 x101110 <= 65
|
|
up101111 -1 x101111 >= 0
|
|
up101111 +64 x101111 <= 65
|
|
up110000 -3 x110000 >= 0
|
|
up110000 +64 x110000 <= 67
|
|
up110001 -2 x110001 >= 0
|
|
up110001 +64 x110001 <= 66
|
|
up110010 -2 x110010 >= 0
|
|
up110010 +64 x110010 <= 66
|
|
up110011 -1 x110011 >= 0
|
|
up110011 +64 x110011 <= 65
|
|
up110100 -2 x110100 >= 0
|
|
up110100 +64 x110100 <= 66
|
|
up110101 -1 x110101 >= 0
|
|
up110101 +64 x110101 <= 65
|
|
up110110 -1 x110110 >= 0
|
|
up110110 +64 x110110 <= 65
|
|
up110111 -1 x110111 >= 0
|
|
up110111 +64 x110111 <= 65
|
|
up111000 -2 x111000 >= 0
|
|
up111000 +64 x111000 <= 66
|
|
up111001 -1 x111001 >= 0
|
|
up111001 +64 x111001 <= 65
|
|
up111010 -1 x111010 >= 0
|
|
up111010 +64 x111010 <= 65
|
|
up111011 -1 x111011 >= 0
|
|
up111011 +64 x111011 <= 65
|
|
up111100 -1 x111100 >= 0
|
|
up111100 +64 x111100 <= 65
|
|
up111101 -1 x111101 >= 0
|
|
up111101 +64 x111101 <= 65
|
|
up111110 -1 x111110 >= 0
|
|
up111110 +64 x111110 <= 65
|
|
dn000001 -1 x000001 >= 0
|
|
dn000001 +64 x000001 <= 65
|
|
dn000010 -1 x000010 >= 0
|
|
dn000010 +64 x000010 <= 65
|
|
dn000011 -2 x000011 >= 0
|
|
dn000011 +64 x000011 <= 66
|
|
dn000100 -1 x000100 >= 0
|
|
dn000100 +64 x000100 <= 65
|
|
dn000101 -2 x000101 >= 0
|
|
dn000101 +64 x000101 <= 66
|
|
dn000110 -2 x000110 >= 0
|
|
dn000110 +64 x000110 <= 66
|
|
dn000111 -1 x000111 >= 0
|
|
dn000111 +64 x000111 <= 65
|
|
dn001000 -1 x001000 >= 0
|
|
dn001000 +64 x001000 <= 65
|
|
dn001001 -2 x001001 >= 0
|
|
dn001001 +64 x001001 <= 66
|
|
dn001010 -2 x001010 >= 0
|
|
dn001010 +64 x001010 <= 66
|
|
dn001011 -1 x001011 >= 0
|
|
dn001011 +64 x001011 <= 65
|
|
dn001100 -2 x001100 >= 0
|
|
dn001100 +64 x001100 <= 66
|
|
dn001101 -1 x001101 >= 0
|
|
dn001101 +64 x001101 <= 65
|
|
dn001110 -1 x001110 >= 0
|
|
dn001110 +64 x001110 <= 65
|
|
dn001111 -4 x001111 >= 0
|
|
dn001111 +64 x001111 <= 68
|
|
dn010000 -1 x010000 >= 0
|
|
dn010000 +64 x010000 <= 65
|
|
dn010001 -2 x010001 >= 0
|
|
dn010001 +64 x010001 <= 66
|
|
dn010010 -2 x010010 >= 0
|
|
dn010010 +64 x010010 <= 66
|
|
dn010011 -1 x010011 >= 0
|
|
dn010011 +64 x010011 <= 65
|
|
dn010100 -2 x010100 >= 0
|
|
dn010100 +64 x010100 <= 66
|
|
dn010101 -1 x010101 >= 0
|
|
dn010101 +64 x010101 <= 65
|
|
dn010110 -1 x010110 >= 0
|
|
dn010110 +64 x010110 <= 65
|
|
dn010111 -4 x010111 >= 0
|
|
dn010111 +64 x010111 <= 68
|
|
dn011000 -2 x011000 >= 0
|
|
dn011000 +64 x011000 <= 66
|
|
dn011001 -1 x011001 >= 0
|
|
dn011001 +64 x011001 <= 65
|
|
dn011010 -1 x011010 >= 0
|
|
dn011010 +64 x011010 <= 65
|
|
dn011011 -4 x011011 >= 0
|
|
dn011011 +64 x011011 <= 68
|
|
dn011100 -1 x011100 >= 0
|
|
dn011100 +64 x011100 <= 65
|
|
dn011101 -4 x011101 >= 0
|
|
dn011101 +64 x011101 <= 68
|
|
dn011110 -4 x011110 >= 0
|
|
dn011110 +64 x011110 <= 68
|
|
dn011111 -3 x011111 >= 0
|
|
dn011111 +64 x011111 <= 67
|
|
dn100000 -1 x100000 >= 0
|
|
dn100000 +64 x100000 <= 65
|
|
dn100001 -2 x100001 >= 0
|
|
dn100001 +64 x100001 <= 66
|
|
dn100010 -2 x100010 >= 0
|
|
dn100010 +64 x100010 <= 66
|
|
dn100011 -1 x100011 >= 0
|
|
dn100011 +64 x100011 <= 65
|
|
dn100100 -2 x100100 >= 0
|
|
dn100100 +64 x100100 <= 66
|
|
dn100101 -1 x100101 >= 0
|
|
dn100101 +64 x100101 <= 65
|
|
dn100110 -1 x100110 >= 0
|
|
dn100110 +64 x100110 <= 65
|
|
dn100111 -4 x100111 >= 0
|
|
dn100111 +64 x100111 <= 68
|
|
dn101000 -2 x101000 >= 0
|
|
dn101000 +64 x101000 <= 66
|
|
dn101001 -1 x101001 >= 0
|
|
dn101001 +64 x101001 <= 65
|
|
dn101010 -1 x101010 >= 0
|
|
dn101010 +64 x101010 <= 65
|
|
dn101011 -4 x101011 >= 0
|
|
dn101011 +64 x101011 <= 68
|
|
dn101100 -1 x101100 >= 0
|
|
dn101100 +64 x101100 <= 65
|
|
dn101101 -4 x101101 >= 0
|
|
dn101101 +64 x101101 <= 68
|
|
dn101110 -4 x101110 >= 0
|
|
dn101110 +64 x101110 <= 68
|
|
dn101111 -3 x101111 >= 0
|
|
dn101111 +64 x101111 <= 67
|
|
dn110000 -2 x110000 >= 0
|
|
dn110000 +64 x110000 <= 66
|
|
dn110001 -1 x110001 >= 0
|
|
dn110001 +64 x110001 <= 65
|
|
dn110010 -1 x110010 >= 0
|
|
dn110010 +64 x110010 <= 65
|
|
dn110011 -4 x110011 >= 0
|
|
dn110011 +64 x110011 <= 68
|
|
dn110100 -1 x110100 >= 0
|
|
dn110100 +64 x110100 <= 65
|
|
dn110101 -4 x110101 >= 0
|
|
dn110101 +64 x110101 <= 68
|
|
dn110110 -4 x110110 >= 0
|
|
dn110110 +64 x110110 <= 68
|
|
dn110111 -3 x110111 >= 0
|
|
dn110111 +64 x110111 <= 67
|
|
dn111000 -1 x111000 >= 0
|
|
dn111000 +64 x111000 <= 65
|
|
dn111001 -4 x111001 >= 0
|
|
dn111001 +64 x111001 <= 68
|
|
dn111010 -4 x111010 >= 0
|
|
dn111010 +64 x111010 <= 68
|
|
dn111011 -3 x111011 >= 0
|
|
dn111011 +64 x111011 <= 67
|
|
dn111100 -4 x111100 >= 0
|
|
dn111100 +64 x111100 <= 68
|
|
dn111101 -3 x111101 >= 0
|
|
dn111101 +64 x111101 <= 67
|
|
dn111110 -3 x111110 >= 0
|
|
dn111110 +64 x111110 <= 67
|
|
dn111111 -3 x111111 >= 0
|
|
dn111111 +64 x111111 <= 67
|
|
binary
|
|
x000000 x000001 x000010 x000011 x000100 x000101 x000110 x000111
|
|
x001000 x001001 x001010 x001011 x001100 x001101 x001110 x001111
|
|
x010000 x010001 x010010 x010011 x010100 x010101 x010110 x010111
|
|
x011000 x011001 x011010 x011011 x011100 x011101 x011110 x011111
|
|
x100000 x100001 x100010 x100011 x100100 x100101 x100110 x100111
|
|
x101000 x101001 x101010 x101011 x101100 x101101 x101110 x101111
|
|
x110000 x110001 x110010 x110011 x110100 x110101 x110110 x110111
|
|
x111000 x111001 x111010 x111011 x111100 x111101 x111110 x111111
|
|
integer
|
|
dn000000 up000000 dn000001 up000001 dn000010 up000010 dn000011 up000011
|
|
dn000100 up000100 dn000101 up000101 dn000110 up000110 dn000111 up000111
|
|
dn001000 up001000 dn001001 up001001 dn001010 up001010 dn001011 up001011
|
|
dn001100 up001100 dn001101 up001101 dn001110 up001110 dn001111 up001111
|
|
dn010000 up010000 dn010001 up010001 dn010010 up010010 dn010011 up010011
|
|
dn010100 up010100 dn010101 up010101 dn010110 up010110 dn010111 up010111
|
|
dn011000 up011000 dn011001 up011001 dn011010 up011010 dn011011 up011011
|
|
dn011100 up011100 dn011101 up011101 dn011110 up011110 dn011111 up011111
|
|
dn100000 up100000 dn100001 up100001 dn100010 up100010 dn100011 up100011
|
|
dn100100 up100100 dn100101 up100101 dn100110 up100110 dn100111 up100111
|
|
dn101000 up101000 dn101001 up101001 dn101010 up101010 dn101011 up101011
|
|
dn101100 up101100 dn101101 up101101 dn101110 up101110 dn101111 up101111
|
|
dn110000 up110000 dn110001 up110001 dn110010 up110010 dn110011 up110011
|
|
dn110100 up110100 dn110101 up110101 dn110110 up110110 dn110111 up110111
|
|
dn111000 up111000 dn111001 up111001 dn111010 up111010 dn111011 up111011
|
|
dn111100 up111100 dn111101 up111101 dn111110 up111110 dn111111 up111111
|
|
End
|