You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							210 lines
						
					
					
						
							7.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							210 lines
						
					
					
						
							7.3 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "common.h" | |
|  | |
| // y = alpha*A*x + beta*y | |
| int EIGEN_BLAS_FUNC(symv) (char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) | |
| { | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   Scalar* y = reinterpret_cast<Scalar*>(py); | |
|   Scalar alpha  = *reinterpret_cast<Scalar*>(palpha); | |
|   Scalar beta   = *reinterpret_cast<Scalar*>(pbeta); | |
| 
 | |
|   // check arguments | |
|   int info = 0; | |
|   if(UPLO(*uplo)==INVALID)        info = 1; | |
|   else if(*n<0)                   info = 2; | |
|   else if(*lda<std::max(1,*n))    info = 5; | |
|   else if(*incx==0)               info = 7; | |
|   else if(*incy==0)               info = 10; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"SYMV ",&info,6); | |
| 
 | |
|   if(*n==0) | |
|     return 0; | |
| 
 | |
|   Scalar* actual_x = get_compact_vector(x,*n,*incx); | |
|   Scalar* actual_y = get_compact_vector(y,*n,*incy); | |
| 
 | |
|   if(beta!=Scalar(1)) | |
|   { | |
|     if(beta==Scalar(0)) vector(actual_y, *n).setZero(); | |
|     else                vector(actual_y, *n) *= beta; | |
|   } | |
| 
 | |
|   // TODO performs a direct call to the underlying implementation function | |
|        if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n)); | |
|   else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n)); | |
| 
 | |
|   if(actual_x!=x) delete[] actual_x; | |
|   if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy); | |
| 
 | |
|   return 1; | |
| } | |
| 
 | |
| // C := alpha*x*x' + C | |
| int EIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pc, int *ldc) | |
| { | |
| 
 | |
| //   typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar); | |
| //   static functype func[2]; | |
|  | |
| //   static bool init = false; | |
| //   if(!init) | |
| //   { | |
| //     for(int k=0; k<2; ++k) | |
| //       func[k] = 0; | |
| // | |
| //     func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run); | |
| //     func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run); | |
|  | |
| //     init = true; | |
| //   } | |
|  | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   Scalar* c = reinterpret_cast<Scalar*>(pc); | |
|   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | |
| 
 | |
|   int info = 0; | |
|   if(UPLO(*uplo)==INVALID)                                            info = 1; | |
|   else if(*n<0)                                                       info = 2; | |
|   else if(*incx==0)                                                   info = 5; | |
|   else if(*ldc<std::max(1,*n))                                        info = 7; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"SYR  ",&info,6); | |
| 
 | |
|   if(*n==0 || alpha==Scalar(0)) return 1; | |
| 
 | |
|   // if the increment is not 1, let's copy it to a temporary vector to enable vectorization | |
|   Scalar* x_cpy = get_compact_vector(x,*n,*incx); | |
| 
 | |
|   Matrix<Scalar,Dynamic,Dynamic> m2(matrix(c,*n,*n,*ldc)); | |
|    | |
|   // TODO check why this is not accurate enough for lapack tests | |
| //   if(UPLO(*uplo)==LO)       matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha); | |
| //   else if(UPLO(*uplo)==UP)  matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha); | |
|  | |
|   if(UPLO(*uplo)==LO) | |
|     for(int j=0;j<*n;++j) | |
|       matrix(c,*n,*n,*ldc).col(j).tail(*n-j) += alpha * x_cpy[j] * vector(x_cpy+j,*n-j); | |
|   else | |
|     for(int j=0;j<*n;++j) | |
|       matrix(c,*n,*n,*ldc).col(j).head(j+1) += alpha * x_cpy[j] * vector(x_cpy,j+1); | |
| 
 | |
|   if(x_cpy!=x)  delete[] x_cpy; | |
| 
 | |
|   return 1; | |
| } | |
| 
 | |
| // C := alpha*x*y' + alpha*y*x' + C | |
| int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, int *ldc) | |
| { | |
| //   typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar); | |
| //   static functype func[2]; | |
| // | |
| //   static bool init = false; | |
| //   if(!init) | |
| //   { | |
| //     for(int k=0; k<2; ++k) | |
| //       func[k] = 0; | |
| // | |
| //     func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run); | |
| //     func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run); | |
| // | |
| //     init = true; | |
| //   } | |
|  | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   Scalar* y = reinterpret_cast<Scalar*>(py); | |
|   Scalar* c = reinterpret_cast<Scalar*>(pc); | |
|   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | |
| 
 | |
|   int info = 0; | |
|   if(UPLO(*uplo)==INVALID)                                            info = 1; | |
|   else if(*n<0)                                                       info = 2; | |
|   else if(*incx==0)                                                   info = 5; | |
|   else if(*incy==0)                                                   info = 7; | |
|   else if(*ldc<std::max(1,*n))                                        info = 9; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"SYR2 ",&info,6); | |
| 
 | |
|   if(alpha==Scalar(0)) | |
|     return 1; | |
| 
 | |
|   Scalar* x_cpy = get_compact_vector(x,*n,*incx); | |
|   Scalar* y_cpy = get_compact_vector(y,*n,*incy); | |
| 
 | |
|   // TODO perform direct calls to underlying implementation | |
|   if(UPLO(*uplo)==LO)       matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha); | |
|   else if(UPLO(*uplo)==UP)  matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha); | |
| 
 | |
|   if(x_cpy!=x)  delete[] x_cpy; | |
|   if(y_cpy!=y)  delete[] y_cpy; | |
| 
 | |
| //   int code = UPLO(*uplo); | |
| //   if(code>=2 || func[code]==0) | |
| //     return 0; | |
|  | |
| //   func[code](*n, a, *inca, b, *incb, c, *ldc, alpha); | |
|   return 1; | |
| } | |
| 
 | |
| /**  DSBMV  performs the matrix-vector  operation | |
|   * | |
|   *     y := alpha*A*x + beta*y, | |
|   * | |
|   *  where alpha and beta are scalars, x and y are n element vectors and | |
|   *  A is an n by n symmetric band matrix, with k super-diagonals. | |
|   */ | |
| // int EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, | |
| //                            RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) | |
| // { | |
| //   return 1; | |
| // } | |
|  | |
| 
 | |
| /**  DSPMV  performs the matrix-vector operation | |
|   * | |
|   *     y := alpha*A*x + beta*y, | |
|   * | |
|   *  where alpha and beta are scalars, x and y are n element vectors and | |
|   *  A is an n by n symmetric matrix, supplied in packed form. | |
|   * | |
|   */ | |
| // int EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) | |
| // { | |
| //   return 1; | |
| // } | |
|  | |
| /**  DSPR    performs the symmetric rank 1 operation | |
|   * | |
|   *     A := alpha*x*x' + A, | |
|   * | |
|   *  where alpha is a real scalar, x is an n element vector and A is an | |
|   *  n by n symmetric matrix, supplied in packed form. | |
|   */ | |
| // int EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *alpha, Scalar *x, int *incx, Scalar *ap) | |
| // { | |
| //   return 1; | |
| // } | |
|  | |
| /**  DSPR2  performs the symmetric rank 2 operation | |
|   * | |
|   *     A := alpha*x*y' + alpha*y*x' + A, | |
|   * | |
|   *  where alpha is a scalar, x and y are n element vectors and A is an | |
|   *  n by n symmetric matrix, supplied in packed form. | |
|   */ | |
| // int EIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap) | |
| // { | |
| //   return 1; | |
| // } | |
| 
 |