You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1226 lines
						
					
					
						
							46 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							1226 lines
						
					
					
						
							46 KiB
						
					
					
				| // Copyright 2005, Google Inc. | |
| // All rights reserved. | |
| // | |
| // Redistribution and use in source and binary forms, with or without | |
| // modification, are permitted provided that the following conditions are | |
| // met: | |
| // | |
| //     * Redistributions of source code must retain the above copyright | |
| // notice, this list of conditions and the following disclaimer. | |
| //     * Redistributions in binary form must reproduce the above | |
| // copyright notice, this list of conditions and the following disclaimer | |
| // in the documentation and/or other materials provided with the | |
| // distribution. | |
| //     * Neither the name of Google Inc. nor the names of its | |
| // contributors may be used to endorse or promote products derived from | |
| // this software without specific prior written permission. | |
| // | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| // | |
| // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee) | |
| // | |
| // The Google C++ Testing Framework (Google Test) | |
| // | |
| // This header file declares functions and macros used internally by | |
| // Google Test.  They are subject to change without notice. | |
|  | |
| #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ | |
| #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ | |
|  | |
| #include "gtest/internal/gtest-port.h" | |
|  | |
| #if GTEST_OS_LINUX | |
| # include <stdlib.h> | |
| # include <sys/types.h> | |
| # include <sys/wait.h> | |
| # include <unistd.h> | |
| #endif  // GTEST_OS_LINUX | |
|  | |
| #include <ctype.h> | |
| #include <string.h> | |
| #include <iomanip> | |
| #include <limits> | |
| #include <set> | |
|  | |
| #include "gtest/internal/gtest-string.h" | |
| #include "gtest/internal/gtest-filepath.h" | |
| #include "gtest/internal/gtest-type-util.h" | |
|  | |
| // Due to C++ preprocessor weirdness, we need double indirection to | |
| // concatenate two tokens when one of them is __LINE__.  Writing | |
| // | |
| //   foo ## __LINE__ | |
| // | |
| // will result in the token foo__LINE__, instead of foo followed by | |
| // the current line number.  For more details, see | |
| // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 | |
| #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar) | |
| #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar | |
|  | |
| // Google Test defines the testing::Message class to allow construction of | |
| // test messages via the << operator.  The idea is that anything | |
| // streamable to std::ostream can be streamed to a testing::Message. | |
| // This allows a user to use his own types in Google Test assertions by | |
| // overloading the << operator. | |
| // | |
| // util/gtl/stl_logging-inl.h overloads << for STL containers.  These | |
| // overloads cannot be defined in the std namespace, as that will be | |
| // undefined behavior.  Therefore, they are defined in the global | |
| // namespace instead. | |
| // | |
| // C++'s symbol lookup rule (i.e. Koenig lookup) says that these | |
| // overloads are visible in either the std namespace or the global | |
| // namespace, but not other namespaces, including the testing | |
| // namespace which Google Test's Message class is in. | |
| // | |
| // To allow STL containers (and other types that has a << operator | |
| // defined in the global namespace) to be used in Google Test assertions, | |
| // testing::Message must access the custom << operator from the global | |
| // namespace.  Hence this helper function. | |
| // | |
| // Note: Jeffrey Yasskin suggested an alternative fix by "using | |
| // ::operator<<;" in the definition of Message's operator<<.  That fix | |
| // doesn't require a helper function, but unfortunately doesn't | |
| // compile with MSVC. | |
| template <typename T> | |
| inline void GTestStreamToHelper(std::ostream* os, const T& val) { | |
|   *os << val; | |
| } | |
| 
 | |
| class ProtocolMessage; | |
| namespace proto2 { class Message; } | |
| 
 | |
| namespace testing { | |
| 
 | |
| // Forward declarations. | |
|  | |
| class AssertionResult;                 // Result of an assertion. | |
| class Message;                         // Represents a failure message. | |
| class Test;                            // Represents a test. | |
| class TestInfo;                        // Information about a test. | |
| class TestPartResult;                  // Result of a test part. | |
| class UnitTest;                        // A collection of test cases. | |
|  | |
| template <typename T> | |
| ::std::string PrintToString(const T& value); | |
| 
 | |
| namespace internal { | |
| 
 | |
| struct TraceInfo;                      // Information about a trace point. | |
| class ScopedTrace;                     // Implements scoped trace. | |
| class TestInfoImpl;                    // Opaque implementation of TestInfo | |
| class UnitTestImpl;                    // Opaque implementation of UnitTest | |
|  | |
| // How many times InitGoogleTest() has been called. | |
| extern int g_init_gtest_count; | |
| 
 | |
| // The text used in failure messages to indicate the start of the | |
| // stack trace. | |
| GTEST_API_ extern const char kStackTraceMarker[]; | |
| 
 | |
| // A secret type that Google Test users don't know about.  It has no | |
| // definition on purpose.  Therefore it's impossible to create a | |
| // Secret object, which is what we want. | |
| class Secret; | |
| 
 | |
| // Two overloaded helpers for checking at compile time whether an | |
| // expression is a null pointer literal (i.e. NULL or any 0-valued | |
| // compile-time integral constant).  Their return values have | |
| // different sizes, so we can use sizeof() to test which version is | |
| // picked by the compiler.  These helpers have no implementations, as | |
| // we only need their signatures. | |
| // | |
| // Given IsNullLiteralHelper(x), the compiler will pick the first | |
| // version if x can be implicitly converted to Secret*, and pick the | |
| // second version otherwise.  Since Secret is a secret and incomplete | |
| // type, the only expression a user can write that has type Secret* is | |
| // a null pointer literal.  Therefore, we know that x is a null | |
| // pointer literal if and only if the first version is picked by the | |
| // compiler. | |
| char IsNullLiteralHelper(Secret* p); | |
| char (&IsNullLiteralHelper(...))[2];  // NOLINT | |
|  | |
| // A compile-time bool constant that is true if and only if x is a | |
| // null pointer literal (i.e. NULL or any 0-valued compile-time | |
| // integral constant). | |
| #ifdef GTEST_ELLIPSIS_NEEDS_POD_ | |
| // We lose support for NULL detection where the compiler doesn't like | |
| // passing non-POD classes through ellipsis (...). | |
| # define GTEST_IS_NULL_LITERAL_(x) false | |
| #else | |
| # define GTEST_IS_NULL_LITERAL_(x) \ | |
|     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1) | |
| #endif  // GTEST_ELLIPSIS_NEEDS_POD_ | |
|  | |
| // Appends the user-supplied message to the Google-Test-generated message. | |
| GTEST_API_ String AppendUserMessage(const String& gtest_msg, | |
|                                     const Message& user_msg); | |
| 
 | |
| // A helper class for creating scoped traces in user programs. | |
| class GTEST_API_ ScopedTrace { | |
|  public: | |
|   // The c'tor pushes the given source file location and message onto | |
|   // a trace stack maintained by Google Test. | |
|   ScopedTrace(const char* file, int line, const Message& message); | |
| 
 | |
|   // The d'tor pops the info pushed by the c'tor. | |
|   // | |
|   // Note that the d'tor is not virtual in order to be efficient. | |
|   // Don't inherit from ScopedTrace! | |
|   ~ScopedTrace(); | |
| 
 | |
|  private: | |
|   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace); | |
| } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its | |
|                             // c'tor and d'tor.  Therefore it doesn't | |
|                             // need to be used otherwise. | |
|  | |
| // Converts a streamable value to a String.  A NULL pointer is | |
| // converted to "(null)".  When the input value is a ::string, | |
| // ::std::string, ::wstring, or ::std::wstring object, each NUL | |
| // character in it is replaced with "\\0". | |
| // Declared here but defined in gtest.h, so that it has access | |
| // to the definition of the Message class, required by the ARM | |
| // compiler. | |
| template <typename T> | |
| String StreamableToString(const T& streamable); | |
| 
 | |
| // The Symbian compiler has a bug that prevents it from selecting the | |
| // correct overload of FormatForComparisonFailureMessage (see below) | |
| // unless we pass the first argument by reference.  If we do that, | |
| // however, Visual Age C++ 10.1 generates a compiler error.  Therefore | |
| // we only apply the work-around for Symbian. | |
| #if defined(__SYMBIAN32__) | |
| # define GTEST_CREF_WORKAROUND_ const& | |
| #else | |
| # define GTEST_CREF_WORKAROUND_ | |
| #endif | |
|  | |
| // When this operand is a const char* or char*, if the other operand | |
| // is a ::std::string or ::string, we print this operand as a C string | |
| // rather than a pointer (we do the same for wide strings); otherwise | |
| // we print it as a pointer to be safe. | |
|  | |
| // This internal macro is used to avoid duplicated code. | |
| #define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\ | |
| inline String FormatForComparisonFailureMessage(\ | |
|     operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \ | |
|     const operand2_type& /*operand2*/) {\ | |
|   return operand1_printer(str);\ | |
| }\ | |
| inline String FormatForComparisonFailureMessage(\ | |
|     const operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \ | |
|     const operand2_type& /*operand2*/) {\ | |
|   return operand1_printer(str);\ | |
| } | |
|  | |
| GTEST_FORMAT_IMPL_(::std::string, String::ShowCStringQuoted) | |
| #if GTEST_HAS_STD_WSTRING | |
| GTEST_FORMAT_IMPL_(::std::wstring, String::ShowWideCStringQuoted) | |
| #endif  // GTEST_HAS_STD_WSTRING | |
|  | |
| #if GTEST_HAS_GLOBAL_STRING | |
| GTEST_FORMAT_IMPL_(::string, String::ShowCStringQuoted) | |
| #endif  // GTEST_HAS_GLOBAL_STRING | |
| #if GTEST_HAS_GLOBAL_WSTRING | |
| GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted) | |
| #endif  // GTEST_HAS_GLOBAL_WSTRING | |
|  | |
| #undef GTEST_FORMAT_IMPL_ | |
|  | |
| // The next four overloads handle the case where the operand being | |
| // printed is a char/wchar_t pointer and the other operand is not a | |
| // string/wstring object.  In such cases, we just print the operand as | |
| // a pointer to be safe. | |
| #define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType)                       \ | |
|   template <typename T>                                             \ | |
|   String FormatForComparisonFailureMessage(CharType* GTEST_CREF_WORKAROUND_ p, \ | |
|                                            const T&) { \ | |
|     return PrintToString(static_cast<const void*>(p));              \ | |
|   } | |
|  | |
| GTEST_FORMAT_CHAR_PTR_IMPL_(char) | |
| GTEST_FORMAT_CHAR_PTR_IMPL_(const char) | |
| GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t) | |
| GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t) | |
| 
 | |
| #undef GTEST_FORMAT_CHAR_PTR_IMPL_ | |
|  | |
| // Constructs and returns the message for an equality assertion | |
| // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. | |
| // | |
| // The first four parameters are the expressions used in the assertion | |
| // and their values, as strings.  For example, for ASSERT_EQ(foo, bar) | |
| // where foo is 5 and bar is 6, we have: | |
| // | |
| //   expected_expression: "foo" | |
| //   actual_expression:   "bar" | |
| //   expected_value:      "5" | |
| //   actual_value:        "6" | |
| // | |
| // The ignoring_case parameter is true iff the assertion is a | |
| // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will | |
| // be inserted into the message. | |
| GTEST_API_ AssertionResult EqFailure(const char* expected_expression, | |
|                                      const char* actual_expression, | |
|                                      const String& expected_value, | |
|                                      const String& actual_value, | |
|                                      bool ignoring_case); | |
| 
 | |
| // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. | |
| GTEST_API_ String GetBoolAssertionFailureMessage( | |
|     const AssertionResult& assertion_result, | |
|     const char* expression_text, | |
|     const char* actual_predicate_value, | |
|     const char* expected_predicate_value); | |
| 
 | |
| // This template class represents an IEEE floating-point number | |
| // (either single-precision or double-precision, depending on the | |
| // template parameters). | |
| // | |
| // The purpose of this class is to do more sophisticated number | |
| // comparison.  (Due to round-off error, etc, it's very unlikely that | |
| // two floating-points will be equal exactly.  Hence a naive | |
| // comparison by the == operation often doesn't work.) | |
| // | |
| // Format of IEEE floating-point: | |
| // | |
| //   The most-significant bit being the leftmost, an IEEE | |
| //   floating-point looks like | |
| // | |
| //     sign_bit exponent_bits fraction_bits | |
| // | |
| //   Here, sign_bit is a single bit that designates the sign of the | |
| //   number. | |
| // | |
| //   For float, there are 8 exponent bits and 23 fraction bits. | |
| // | |
| //   For double, there are 11 exponent bits and 52 fraction bits. | |
| // | |
| //   More details can be found at | |
| //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard. | |
| // | |
| // Template parameter: | |
| // | |
| //   RawType: the raw floating-point type (either float or double) | |
| template <typename RawType> | |
| class FloatingPoint { | |
|  public: | |
|   // Defines the unsigned integer type that has the same size as the | |
|   // floating point number. | |
|   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits; | |
| 
 | |
|   // Constants. | |
|  | |
|   // # of bits in a number. | |
|   static const size_t kBitCount = 8*sizeof(RawType); | |
| 
 | |
|   // # of fraction bits in a number. | |
|   static const size_t kFractionBitCount = | |
|     std::numeric_limits<RawType>::digits - 1; | |
| 
 | |
|   // # of exponent bits in a number. | |
|   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; | |
| 
 | |
|   // The mask for the sign bit. | |
|   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); | |
| 
 | |
|   // The mask for the fraction bits. | |
|   static const Bits kFractionBitMask = | |
|     ~static_cast<Bits>(0) >> (kExponentBitCount + 1); | |
| 
 | |
|   // The mask for the exponent bits. | |
|   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); | |
| 
 | |
|   // How many ULP's (Units in the Last Place) we want to tolerate when | |
|   // comparing two numbers.  The larger the value, the more error we | |
|   // allow.  A 0 value means that two numbers must be exactly the same | |
|   // to be considered equal. | |
|   // | |
|   // The maximum error of a single floating-point operation is 0.5 | |
|   // units in the last place.  On Intel CPU's, all floating-point | |
|   // calculations are done with 80-bit precision, while double has 64 | |
|   // bits.  Therefore, 4 should be enough for ordinary use. | |
|   // | |
|   // See the following article for more details on ULP: | |
|   // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm. | |
|   static const size_t kMaxUlps = 4; | |
| 
 | |
|   // Constructs a FloatingPoint from a raw floating-point number. | |
|   // | |
|   // On an Intel CPU, passing a non-normalized NAN (Not a Number) | |
|   // around may change its bits, although the new value is guaranteed | |
|   // to be also a NAN.  Therefore, don't expect this constructor to | |
|   // preserve the bits in x when x is a NAN. | |
|   explicit FloatingPoint(const RawType& x) { u_.value_ = x; } | |
| 
 | |
|   // Static methods | |
|  | |
|   // Reinterprets a bit pattern as a floating-point number. | |
|   // | |
|   // This function is needed to test the AlmostEquals() method. | |
|   static RawType ReinterpretBits(const Bits bits) { | |
|     FloatingPoint fp(0); | |
|     fp.u_.bits_ = bits; | |
|     return fp.u_.value_; | |
|   } | |
| 
 | |
|   // Returns the floating-point number that represent positive infinity. | |
|   static RawType Infinity() { | |
|     return ReinterpretBits(kExponentBitMask); | |
|   } | |
| 
 | |
|   // Non-static methods | |
|  | |
|   // Returns the bits that represents this number. | |
|   const Bits &bits() const { return u_.bits_; } | |
| 
 | |
|   // Returns the exponent bits of this number. | |
|   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; } | |
| 
 | |
|   // Returns the fraction bits of this number. | |
|   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; } | |
| 
 | |
|   // Returns the sign bit of this number. | |
|   Bits sign_bit() const { return kSignBitMask & u_.bits_; } | |
| 
 | |
|   // Returns true iff this is NAN (not a number). | |
|   bool is_nan() const { | |
|     // It's a NAN if the exponent bits are all ones and the fraction | |
|     // bits are not entirely zeros. | |
|     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); | |
|   } | |
| 
 | |
|   // Returns true iff this number is at most kMaxUlps ULP's away from | |
|   // rhs.  In particular, this function: | |
|   // | |
|   //   - returns false if either number is (or both are) NAN. | |
|   //   - treats really large numbers as almost equal to infinity. | |
|   //   - thinks +0.0 and -0.0 are 0 DLP's apart. | |
|   bool AlmostEquals(const FloatingPoint& rhs) const { | |
|     // The IEEE standard says that any comparison operation involving | |
|     // a NAN must return false. | |
|     if (is_nan() || rhs.is_nan()) return false; | |
| 
 | |
|     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) | |
|         <= kMaxUlps; | |
|   } | |
| 
 | |
|  private: | |
|   // The data type used to store the actual floating-point number. | |
|   union FloatingPointUnion { | |
|     RawType value_;  // The raw floating-point number. | |
|     Bits bits_;      // The bits that represent the number. | |
|   }; | |
| 
 | |
|   // Converts an integer from the sign-and-magnitude representation to | |
|   // the biased representation.  More precisely, let N be 2 to the | |
|   // power of (kBitCount - 1), an integer x is represented by the | |
|   // unsigned number x + N. | |
|   // | |
|   // For instance, | |
|   // | |
|   //   -N + 1 (the most negative number representable using | |
|   //          sign-and-magnitude) is represented by 1; | |
|   //   0      is represented by N; and | |
|   //   N - 1  (the biggest number representable using | |
|   //          sign-and-magnitude) is represented by 2N - 1. | |
|   // | |
|   // Read http://en.wikipedia.org/wiki/Signed_number_representations | |
|   // for more details on signed number representations. | |
|   static Bits SignAndMagnitudeToBiased(const Bits &sam) { | |
|     if (kSignBitMask & sam) { | |
|       // sam represents a negative number. | |
|       return ~sam + 1; | |
|     } else { | |
|       // sam represents a positive number. | |
|       return kSignBitMask | sam; | |
|     } | |
|   } | |
| 
 | |
|   // Given two numbers in the sign-and-magnitude representation, | |
|   // returns the distance between them as an unsigned number. | |
|   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, | |
|                                                      const Bits &sam2) { | |
|     const Bits biased1 = SignAndMagnitudeToBiased(sam1); | |
|     const Bits biased2 = SignAndMagnitudeToBiased(sam2); | |
|     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); | |
|   } | |
| 
 | |
|   FloatingPointUnion u_; | |
| }; | |
| 
 | |
| // Typedefs the instances of the FloatingPoint template class that we | |
| // care to use. | |
| typedef FloatingPoint<float> Float; | |
| typedef FloatingPoint<double> Double; | |
| 
 | |
| // In order to catch the mistake of putting tests that use different | |
| // test fixture classes in the same test case, we need to assign | |
| // unique IDs to fixture classes and compare them.  The TypeId type is | |
| // used to hold such IDs.  The user should treat TypeId as an opaque | |
| // type: the only operation allowed on TypeId values is to compare | |
| // them for equality using the == operator. | |
| typedef const void* TypeId; | |
| 
 | |
| template <typename T> | |
| class TypeIdHelper { | |
|  public: | |
|   // dummy_ must not have a const type.  Otherwise an overly eager | |
|   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge | |
|   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization". | |
|   static bool dummy_; | |
| }; | |
| 
 | |
| template <typename T> | |
| bool TypeIdHelper<T>::dummy_ = false; | |
| 
 | |
| // GetTypeId<T>() returns the ID of type T.  Different values will be | |
| // returned for different types.  Calling the function twice with the | |
| // same type argument is guaranteed to return the same ID. | |
| template <typename T> | |
| TypeId GetTypeId() { | |
|   // The compiler is required to allocate a different | |
|   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate | |
|   // the template.  Therefore, the address of dummy_ is guaranteed to | |
|   // be unique. | |
|   return &(TypeIdHelper<T>::dummy_); | |
| } | |
| 
 | |
| // Returns the type ID of ::testing::Test.  Always call this instead | |
| // of GetTypeId< ::testing::Test>() to get the type ID of | |
| // ::testing::Test, as the latter may give the wrong result due to a | |
| // suspected linker bug when compiling Google Test as a Mac OS X | |
| // framework. | |
| GTEST_API_ TypeId GetTestTypeId(); | |
| 
 | |
| // Defines the abstract factory interface that creates instances | |
| // of a Test object. | |
| class TestFactoryBase { | |
|  public: | |
|   virtual ~TestFactoryBase() {} | |
| 
 | |
|   // Creates a test instance to run. The instance is both created and destroyed | |
|   // within TestInfoImpl::Run() | |
|   virtual Test* CreateTest() = 0; | |
| 
 | |
|  protected: | |
|   TestFactoryBase() {} | |
| 
 | |
|  private: | |
|   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase); | |
| }; | |
| 
 | |
| // This class provides implementation of TeastFactoryBase interface. | |
| // It is used in TEST and TEST_F macros. | |
| template <class TestClass> | |
| class TestFactoryImpl : public TestFactoryBase { | |
|  public: | |
|   virtual Test* CreateTest() { return new TestClass; } | |
| }; | |
| 
 | |
| #if GTEST_OS_WINDOWS | |
|  | |
| // Predicate-formatters for implementing the HRESULT checking macros | |
| // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} | |
| // We pass a long instead of HRESULT to avoid causing an | |
| // include dependency for the HRESULT type. | |
| GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr, | |
|                                             long hr);  // NOLINT | |
| GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr, | |
|                                             long hr);  // NOLINT | |
|  | |
| #endif  // GTEST_OS_WINDOWS | |
|  | |
| // Types of SetUpTestCase() and TearDownTestCase() functions. | |
| typedef void (*SetUpTestCaseFunc)(); | |
| typedef void (*TearDownTestCaseFunc)(); | |
| 
 | |
| // Creates a new TestInfo object and registers it with Google Test; | |
| // returns the created object. | |
| // | |
| // Arguments: | |
| // | |
| //   test_case_name:   name of the test case | |
| //   name:             name of the test | |
| //   type_param        the name of the test's type parameter, or NULL if | |
| //                     this is not  a typed or a type-parameterized test. | |
| //   value_param       text representation of the test's value parameter, | |
| //                     or NULL if this is not a type-parameterized test. | |
| //   fixture_class_id: ID of the test fixture class | |
| //   set_up_tc:        pointer to the function that sets up the test case | |
| //   tear_down_tc:     pointer to the function that tears down the test case | |
| //   factory:          pointer to the factory that creates a test object. | |
| //                     The newly created TestInfo instance will assume | |
| //                     ownership of the factory object. | |
| GTEST_API_ TestInfo* MakeAndRegisterTestInfo( | |
|     const char* test_case_name, const char* name, | |
|     const char* type_param, | |
|     const char* value_param, | |
|     TypeId fixture_class_id, | |
|     SetUpTestCaseFunc set_up_tc, | |
|     TearDownTestCaseFunc tear_down_tc, | |
|     TestFactoryBase* factory); | |
| 
 | |
| // If *pstr starts with the given prefix, modifies *pstr to be right | |
| // past the prefix and returns true; otherwise leaves *pstr unchanged | |
| // and returns false.  None of pstr, *pstr, and prefix can be NULL. | |
| GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr); | |
| 
 | |
| #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P | |
|  | |
| // State of the definition of a type-parameterized test case. | |
| class GTEST_API_ TypedTestCasePState { | |
|  public: | |
|   TypedTestCasePState() : registered_(false) {} | |
| 
 | |
|   // Adds the given test name to defined_test_names_ and return true | |
|   // if the test case hasn't been registered; otherwise aborts the | |
|   // program. | |
|   bool AddTestName(const char* file, int line, const char* case_name, | |
|                    const char* test_name) { | |
|     if (registered_) { | |
|       fprintf(stderr, "%s Test %s must be defined before " | |
|               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n", | |
|               FormatFileLocation(file, line).c_str(), test_name, case_name); | |
|       fflush(stderr); | |
|       posix::Abort(); | |
|     } | |
|     defined_test_names_.insert(test_name); | |
|     return true; | |
|   } | |
| 
 | |
|   // Verifies that registered_tests match the test names in | |
|   // defined_test_names_; returns registered_tests if successful, or | |
|   // aborts the program otherwise. | |
|   const char* VerifyRegisteredTestNames( | |
|       const char* file, int line, const char* registered_tests); | |
| 
 | |
|  private: | |
|   bool registered_; | |
|   ::std::set<const char*> defined_test_names_; | |
| }; | |
| 
 | |
| // Skips to the first non-space char after the first comma in 'str'; | |
| // returns NULL if no comma is found in 'str'. | |
| inline const char* SkipComma(const char* str) { | |
|   const char* comma = strchr(str, ','); | |
|   if (comma == NULL) { | |
|     return NULL; | |
|   } | |
|   while (IsSpace(*(++comma))) {} | |
|   return comma; | |
| } | |
| 
 | |
| // Returns the prefix of 'str' before the first comma in it; returns | |
| // the entire string if it contains no comma. | |
| inline String GetPrefixUntilComma(const char* str) { | |
|   const char* comma = strchr(str, ','); | |
|   return comma == NULL ? String(str) : String(str, comma - str); | |
| } | |
| 
 | |
| // TypeParameterizedTest<Fixture, TestSel, Types>::Register() | |
| // registers a list of type-parameterized tests with Google Test.  The | |
| // return value is insignificant - we just need to return something | |
| // such that we can call this function in a namespace scope. | |
| // | |
| // Implementation note: The GTEST_TEMPLATE_ macro declares a template | |
| // template parameter.  It's defined in gtest-type-util.h. | |
| template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types> | |
| class TypeParameterizedTest { | |
|  public: | |
|   // 'index' is the index of the test in the type list 'Types' | |
|   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase, | |
|   // Types).  Valid values for 'index' are [0, N - 1] where N is the | |
|   // length of Types. | |
|   static bool Register(const char* prefix, const char* case_name, | |
|                        const char* test_names, int index) { | |
|     typedef typename Types::Head Type; | |
|     typedef Fixture<Type> FixtureClass; | |
|     typedef typename GTEST_BIND_(TestSel, Type) TestClass; | |
| 
 | |
|     // First, registers the first type-parameterized test in the type | |
|     // list. | |
|     MakeAndRegisterTestInfo( | |
|         String::Format("%s%s%s/%d", prefix, prefix[0] == '\0' ? "" : "/", | |
|                        case_name, index).c_str(), | |
|         GetPrefixUntilComma(test_names).c_str(), | |
|         GetTypeName<Type>().c_str(), | |
|         NULL,  // No value parameter. | |
|         GetTypeId<FixtureClass>(), | |
|         TestClass::SetUpTestCase, | |
|         TestClass::TearDownTestCase, | |
|         new TestFactoryImpl<TestClass>); | |
| 
 | |
|     // Next, recurses (at compile time) with the tail of the type list. | |
|     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail> | |
|         ::Register(prefix, case_name, test_names, index + 1); | |
|   } | |
| }; | |
| 
 | |
| // The base case for the compile time recursion. | |
| template <GTEST_TEMPLATE_ Fixture, class TestSel> | |
| class TypeParameterizedTest<Fixture, TestSel, Types0> { | |
|  public: | |
|   static bool Register(const char* /*prefix*/, const char* /*case_name*/, | |
|                        const char* /*test_names*/, int /*index*/) { | |
|     return true; | |
|   } | |
| }; | |
| 
 | |
| // TypeParameterizedTestCase<Fixture, Tests, Types>::Register() | |
| // registers *all combinations* of 'Tests' and 'Types' with Google | |
| // Test.  The return value is insignificant - we just need to return | |
| // something such that we can call this function in a namespace scope. | |
| template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types> | |
| class TypeParameterizedTestCase { | |
|  public: | |
|   static bool Register(const char* prefix, const char* case_name, | |
|                        const char* test_names) { | |
|     typedef typename Tests::Head Head; | |
| 
 | |
|     // First, register the first test in 'Test' for each type in 'Types'. | |
|     TypeParameterizedTest<Fixture, Head, Types>::Register( | |
|         prefix, case_name, test_names, 0); | |
| 
 | |
|     // Next, recurses (at compile time) with the tail of the test list. | |
|     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types> | |
|         ::Register(prefix, case_name, SkipComma(test_names)); | |
|   } | |
| }; | |
| 
 | |
| // The base case for the compile time recursion. | |
| template <GTEST_TEMPLATE_ Fixture, typename Types> | |
| class TypeParameterizedTestCase<Fixture, Templates0, Types> { | |
|  public: | |
|   static bool Register(const char* /*prefix*/, const char* /*case_name*/, | |
|                        const char* /*test_names*/) { | |
|     return true; | |
|   } | |
| }; | |
| 
 | |
| #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P | |
|  | |
| // Returns the current OS stack trace as a String. | |
| // | |
| // The maximum number of stack frames to be included is specified by | |
| // the gtest_stack_trace_depth flag.  The skip_count parameter | |
| // specifies the number of top frames to be skipped, which doesn't | |
| // count against the number of frames to be included. | |
| // | |
| // For example, if Foo() calls Bar(), which in turn calls | |
| // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in | |
| // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. | |
| GTEST_API_ String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test, | |
|                                                   int skip_count); | |
| 
 | |
| // Helpers for suppressing warnings on unreachable code or constant | |
| // condition. | |
|  | |
| // Always returns true. | |
| GTEST_API_ bool AlwaysTrue(); | |
| 
 | |
| // Always returns false. | |
| inline bool AlwaysFalse() { return !AlwaysTrue(); } | |
| 
 | |
| // Helper for suppressing false warning from Clang on a const char* | |
| // variable declared in a conditional expression always being NULL in | |
| // the else branch. | |
| struct GTEST_API_ ConstCharPtr { | |
|   ConstCharPtr(const char* str) : value(str) {} | |
|   operator bool() const { return true; } | |
|   const char* value; | |
| }; | |
| 
 | |
| // A simple Linear Congruential Generator for generating random | |
| // numbers with a uniform distribution.  Unlike rand() and srand(), it | |
| // doesn't use global state (and therefore can't interfere with user | |
| // code).  Unlike rand_r(), it's portable.  An LCG isn't very random, | |
| // but it's good enough for our purposes. | |
| class GTEST_API_ Random { | |
|  public: | |
|   static const UInt32 kMaxRange = 1u << 31; | |
| 
 | |
|   explicit Random(UInt32 seed) : state_(seed) {} | |
| 
 | |
|   void Reseed(UInt32 seed) { state_ = seed; } | |
| 
 | |
|   // Generates a random number from [0, range).  Crashes if 'range' is | |
|   // 0 or greater than kMaxRange. | |
|   UInt32 Generate(UInt32 range); | |
| 
 | |
|  private: | |
|   UInt32 state_; | |
|   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random); | |
| }; | |
| 
 | |
| // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a | |
| // compiler error iff T1 and T2 are different types. | |
| template <typename T1, typename T2> | |
| struct CompileAssertTypesEqual; | |
| 
 | |
| template <typename T> | |
| struct CompileAssertTypesEqual<T, T> { | |
| }; | |
| 
 | |
| // Removes the reference from a type if it is a reference type, | |
| // otherwise leaves it unchanged.  This is the same as | |
| // tr1::remove_reference, which is not widely available yet. | |
| template <typename T> | |
| struct RemoveReference { typedef T type; };  // NOLINT | |
| template <typename T> | |
| struct RemoveReference<T&> { typedef T type; };  // NOLINT | |
|  | |
| // A handy wrapper around RemoveReference that works when the argument | |
| // T depends on template parameters. | |
| #define GTEST_REMOVE_REFERENCE_(T) \ | |
|     typename ::testing::internal::RemoveReference<T>::type | |
|  | |
| // Removes const from a type if it is a const type, otherwise leaves | |
| // it unchanged.  This is the same as tr1::remove_const, which is not | |
| // widely available yet. | |
| template <typename T> | |
| struct RemoveConst { typedef T type; };  // NOLINT | |
| template <typename T> | |
| struct RemoveConst<const T> { typedef T type; };  // NOLINT | |
|  | |
| // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above | |
| // definition to fail to remove the const in 'const int[3]' and 'const | |
| // char[3][4]'.  The following specialization works around the bug. | |
| // However, it causes trouble with GCC and thus needs to be | |
| // conditionally compiled. | |
| #if defined(_MSC_VER) || defined(__SUNPRO_CC) || defined(__IBMCPP__) | |
| template <typename T, size_t N> | |
| struct RemoveConst<const T[N]> { | |
|   typedef typename RemoveConst<T>::type type[N]; | |
| }; | |
| #endif | |
|  | |
| // A handy wrapper around RemoveConst that works when the argument | |
| // T depends on template parameters. | |
| #define GTEST_REMOVE_CONST_(T) \ | |
|     typename ::testing::internal::RemoveConst<T>::type | |
|  | |
| // Turns const U&, U&, const U, and U all into U. | |
| #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \ | |
|     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T)) | |
|  | |
| // Adds reference to a type if it is not a reference type, | |
| // otherwise leaves it unchanged.  This is the same as | |
| // tr1::add_reference, which is not widely available yet. | |
| template <typename T> | |
| struct AddReference { typedef T& type; };  // NOLINT | |
| template <typename T> | |
| struct AddReference<T&> { typedef T& type; };  // NOLINT | |
|  | |
| // A handy wrapper around AddReference that works when the argument T | |
| // depends on template parameters. | |
| #define GTEST_ADD_REFERENCE_(T) \ | |
|     typename ::testing::internal::AddReference<T>::type | |
|  | |
| // Adds a reference to const on top of T as necessary.  For example, | |
| // it transforms | |
| // | |
| //   char         ==> const char& | |
| //   const char   ==> const char& | |
| //   char&        ==> const char& | |
| //   const char&  ==> const char& | |
| // | |
| // The argument T must depend on some template parameters. | |
| #define GTEST_REFERENCE_TO_CONST_(T) \ | |
|     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T)) | |
|  | |
| // ImplicitlyConvertible<From, To>::value is a compile-time bool | |
| // constant that's true iff type From can be implicitly converted to | |
| // type To. | |
| template <typename From, typename To> | |
| class ImplicitlyConvertible { | |
|  private: | |
|   // We need the following helper functions only for their types. | |
|   // They have no implementations. | |
|  | |
|   // MakeFrom() is an expression whose type is From.  We cannot simply | |
|   // use From(), as the type From may not have a public default | |
|   // constructor. | |
|   static From MakeFrom(); | |
| 
 | |
|   // These two functions are overloaded.  Given an expression | |
|   // Helper(x), the compiler will pick the first version if x can be | |
|   // implicitly converted to type To; otherwise it will pick the | |
|   // second version. | |
|   // | |
|   // The first version returns a value of size 1, and the second | |
|   // version returns a value of size 2.  Therefore, by checking the | |
|   // size of Helper(x), which can be done at compile time, we can tell | |
|   // which version of Helper() is used, and hence whether x can be | |
|   // implicitly converted to type To. | |
|   static char Helper(To); | |
|   static char (&Helper(...))[2];  // NOLINT | |
|  | |
|   // We have to put the 'public' section after the 'private' section, | |
|   // or MSVC refuses to compile the code. | |
|  public: | |
|   // MSVC warns about implicitly converting from double to int for | |
|   // possible loss of data, so we need to temporarily disable the | |
|   // warning. | |
| #ifdef _MSC_VER | |
| # pragma warning(push)          // Saves the current warning state. | |
| # pragma warning(disable:4244)  // Temporarily disables warning 4244. | |
|  | |
|   static const bool value = | |
|       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1; | |
| # pragma warning(pop)           // Restores the warning state. | |
| #elif defined(__BORLANDC__) | |
|   // C++Builder cannot use member overload resolution during template | |
|   // instantiation.  The simplest workaround is to use its C++0x type traits | |
|   // functions (C++Builder 2009 and above only). | |
|   static const bool value = __is_convertible(From, To); | |
| #else | |
|   static const bool value = | |
|       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1; | |
| #endif  // _MSV_VER | |
| }; | |
| template <typename From, typename To> | |
| const bool ImplicitlyConvertible<From, To>::value; | |
| 
 | |
| // IsAProtocolMessage<T>::value is a compile-time bool constant that's | |
| // true iff T is type ProtocolMessage, proto2::Message, or a subclass | |
| // of those. | |
| template <typename T> | |
| struct IsAProtocolMessage | |
|     : public bool_constant< | |
|   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value || | |
|   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> { | |
| }; | |
| 
 | |
| // When the compiler sees expression IsContainerTest<C>(0), if C is an | |
| // STL-style container class, the first overload of IsContainerTest | |
| // will be viable (since both C::iterator* and C::const_iterator* are | |
| // valid types and NULL can be implicitly converted to them).  It will | |
| // be picked over the second overload as 'int' is a perfect match for | |
| // the type of argument 0.  If C::iterator or C::const_iterator is not | |
| // a valid type, the first overload is not viable, and the second | |
| // overload will be picked.  Therefore, we can determine whether C is | |
| // a container class by checking the type of IsContainerTest<C>(0). | |
| // The value of the expression is insignificant. | |
| // | |
| // Note that we look for both C::iterator and C::const_iterator.  The | |
| // reason is that C++ injects the name of a class as a member of the | |
| // class itself (e.g. you can refer to class iterator as either | |
| // 'iterator' or 'iterator::iterator').  If we look for C::iterator | |
| // only, for example, we would mistakenly think that a class named | |
| // iterator is an STL container. | |
| // | |
| // Also note that the simpler approach of overloading | |
| // IsContainerTest(typename C::const_iterator*) and | |
| // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++. | |
| typedef int IsContainer; | |
| template <class C> | |
| IsContainer IsContainerTest(int /* dummy */, | |
|                             typename C::iterator* /* it */ = NULL, | |
|                             typename C::const_iterator* /* const_it */ = NULL) { | |
|   return 0; | |
| } | |
| 
 | |
| typedef char IsNotContainer; | |
| template <class C> | |
| IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; } | |
| 
 | |
| // EnableIf<condition>::type is void when 'Cond' is true, and | |
| // undefined when 'Cond' is false.  To use SFINAE to make a function | |
| // overload only apply when a particular expression is true, add | |
| // "typename EnableIf<expression>::type* = 0" as the last parameter. | |
| template<bool> struct EnableIf; | |
| template<> struct EnableIf<true> { typedef void type; };  // NOLINT | |
|  | |
| // Utilities for native arrays. | |
|  | |
| // ArrayEq() compares two k-dimensional native arrays using the | |
| // elements' operator==, where k can be any integer >= 0.  When k is | |
| // 0, ArrayEq() degenerates into comparing a single pair of values. | |
|  | |
| template <typename T, typename U> | |
| bool ArrayEq(const T* lhs, size_t size, const U* rhs); | |
| 
 | |
| // This generic version is used when k is 0. | |
| template <typename T, typename U> | |
| inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; } | |
| 
 | |
| // This overload is used when k >= 1. | |
| template <typename T, typename U, size_t N> | |
| inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) { | |
|   return internal::ArrayEq(lhs, N, rhs); | |
| } | |
| 
 | |
| // This helper reduces code bloat.  If we instead put its logic inside | |
| // the previous ArrayEq() function, arrays with different sizes would | |
| // lead to different copies of the template code. | |
| template <typename T, typename U> | |
| bool ArrayEq(const T* lhs, size_t size, const U* rhs) { | |
|   for (size_t i = 0; i != size; i++) { | |
|     if (!internal::ArrayEq(lhs[i], rhs[i])) | |
|       return false; | |
|   } | |
|   return true; | |
| } | |
| 
 | |
| // Finds the first element in the iterator range [begin, end) that | |
| // equals elem.  Element may be a native array type itself. | |
| template <typename Iter, typename Element> | |
| Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { | |
|   for (Iter it = begin; it != end; ++it) { | |
|     if (internal::ArrayEq(*it, elem)) | |
|       return it; | |
|   } | |
|   return end; | |
| } | |
| 
 | |
| // CopyArray() copies a k-dimensional native array using the elements' | |
| // operator=, where k can be any integer >= 0.  When k is 0, | |
| // CopyArray() degenerates into copying a single value. | |
|  | |
| template <typename T, typename U> | |
| void CopyArray(const T* from, size_t size, U* to); | |
| 
 | |
| // This generic version is used when k is 0. | |
| template <typename T, typename U> | |
| inline void CopyArray(const T& from, U* to) { *to = from; } | |
| 
 | |
| // This overload is used when k >= 1. | |
| template <typename T, typename U, size_t N> | |
| inline void CopyArray(const T(&from)[N], U(*to)[N]) { | |
|   internal::CopyArray(from, N, *to); | |
| } | |
| 
 | |
| // This helper reduces code bloat.  If we instead put its logic inside | |
| // the previous CopyArray() function, arrays with different sizes | |
| // would lead to different copies of the template code. | |
| template <typename T, typename U> | |
| void CopyArray(const T* from, size_t size, U* to) { | |
|   for (size_t i = 0; i != size; i++) { | |
|     internal::CopyArray(from[i], to + i); | |
|   } | |
| } | |
| 
 | |
| // The relation between an NativeArray object (see below) and the | |
| // native array it represents. | |
| enum RelationToSource { | |
|   kReference,  // The NativeArray references the native array. | |
|   kCopy        // The NativeArray makes a copy of the native array and | |
|                // owns the copy. | |
| }; | |
| 
 | |
| // Adapts a native array to a read-only STL-style container.  Instead | |
| // of the complete STL container concept, this adaptor only implements | |
| // members useful for Google Mock's container matchers.  New members | |
| // should be added as needed.  To simplify the implementation, we only | |
| // support Element being a raw type (i.e. having no top-level const or | |
| // reference modifier).  It's the client's responsibility to satisfy | |
| // this requirement.  Element can be an array type itself (hence | |
| // multi-dimensional arrays are supported). | |
| template <typename Element> | |
| class NativeArray { | |
|  public: | |
|   // STL-style container typedefs. | |
|   typedef Element value_type; | |
|   typedef Element* iterator; | |
|   typedef const Element* const_iterator; | |
| 
 | |
|   // Constructs from a native array. | |
|   NativeArray(const Element* array, size_t count, RelationToSource relation) { | |
|     Init(array, count, relation); | |
|   } | |
| 
 | |
|   // Copy constructor. | |
|   NativeArray(const NativeArray& rhs) { | |
|     Init(rhs.array_, rhs.size_, rhs.relation_to_source_); | |
|   } | |
| 
 | |
|   ~NativeArray() { | |
|     // Ensures that the user doesn't instantiate NativeArray with a | |
|     // const or reference type. | |
|     static_cast<void>(StaticAssertTypeEqHelper<Element, | |
|         GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>()); | |
|     if (relation_to_source_ == kCopy) | |
|       delete[] array_; | |
|   } | |
| 
 | |
|   // STL-style container methods. | |
|   size_t size() const { return size_; } | |
|   const_iterator begin() const { return array_; } | |
|   const_iterator end() const { return array_ + size_; } | |
|   bool operator==(const NativeArray& rhs) const { | |
|     return size() == rhs.size() && | |
|         ArrayEq(begin(), size(), rhs.begin()); | |
|   } | |
| 
 | |
|  private: | |
|   // Initializes this object; makes a copy of the input array if | |
|   // 'relation' is kCopy. | |
|   void Init(const Element* array, size_t a_size, RelationToSource relation) { | |
|     if (relation == kReference) { | |
|       array_ = array; | |
|     } else { | |
|       Element* const copy = new Element[a_size]; | |
|       CopyArray(array, a_size, copy); | |
|       array_ = copy; | |
|     } | |
|     size_ = a_size; | |
|     relation_to_source_ = relation; | |
|   } | |
| 
 | |
|   const Element* array_; | |
|   size_t size_; | |
|   RelationToSource relation_to_source_; | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(NativeArray); | |
| }; | |
| 
 | |
| }  // namespace internal | |
| }  // namespace testing | |
|  | |
| #define GTEST_MESSAGE_AT_(file, line, message, result_type) \ | |
|   ::testing::internal::AssertHelper(result_type, file, line, message) \ | |
|     = ::testing::Message() | |
|  | |
| #define GTEST_MESSAGE_(message, result_type) \ | |
|   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type) | |
|  | |
| #define GTEST_FATAL_FAILURE_(message) \ | |
|   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure) | |
|  | |
| #define GTEST_NONFATAL_FAILURE_(message) \ | |
|   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure) | |
|  | |
| #define GTEST_SUCCESS_(message) \ | |
|   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess) | |
|  | |
| // Suppresses MSVC warnings 4072 (unreachable code) for the code following | |
| // statement if it returns or throws (or doesn't return or throw in some | |
| // situations). | |
| #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \ | |
|   if (::testing::internal::AlwaysTrue()) { statement; } | |
|  | |
| #define GTEST_TEST_THROW_(statement, expected_exception, fail) \ | |
|   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ | |
|   if (::testing::internal::ConstCharPtr gtest_msg = "") { \ | |
|     bool gtest_caught_expected = false; \ | |
|     try { \ | |
|       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ | |
|     } \ | |
|     catch (expected_exception const&) { \ | |
|       gtest_caught_expected = true; \ | |
|     } \ | |
|     catch (...) { \ | |
|       gtest_msg.value = \ | |
|           "Expected: " #statement " throws an exception of type " \ | |
|           #expected_exception ".\n  Actual: it throws a different type."; \ | |
|       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ | |
|     } \ | |
|     if (!gtest_caught_expected) { \ | |
|       gtest_msg.value = \ | |
|           "Expected: " #statement " throws an exception of type " \ | |
|           #expected_exception ".\n  Actual: it throws nothing."; \ | |
|       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ | |
|     } \ | |
|   } else \ | |
|     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \ | |
|       fail(gtest_msg.value) | |
|  | |
| #define GTEST_TEST_NO_THROW_(statement, fail) \ | |
|   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ | |
|   if (::testing::internal::AlwaysTrue()) { \ | |
|     try { \ | |
|       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ | |
|     } \ | |
|     catch (...) { \ | |
|       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ | |
|     } \ | |
|   } else \ | |
|     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \ | |
|       fail("Expected: " #statement " doesn't throw an exception.\n" \ | |
|            "  Actual: it throws.") | |
|  | |
| #define GTEST_TEST_ANY_THROW_(statement, fail) \ | |
|   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ | |
|   if (::testing::internal::AlwaysTrue()) { \ | |
|     bool gtest_caught_any = false; \ | |
|     try { \ | |
|       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ | |
|     } \ | |
|     catch (...) { \ | |
|       gtest_caught_any = true; \ | |
|     } \ | |
|     if (!gtest_caught_any) { \ | |
|       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \ | |
|     } \ | |
|   } else \ | |
|     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \ | |
|       fail("Expected: " #statement " throws an exception.\n" \ | |
|            "  Actual: it doesn't.") | |
|  | |
| 
 | |
| // Implements Boolean test assertions such as EXPECT_TRUE. expression can be | |
| // either a boolean expression or an AssertionResult. text is a textual | |
| // represenation of expression as it was passed into the EXPECT_TRUE. | |
| #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \ | |
|   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ | |
|   if (const ::testing::AssertionResult gtest_ar_ = \ | |
|       ::testing::AssertionResult(expression)) \ | |
|     ; \ | |
|   else \ | |
|     fail(::testing::internal::GetBoolAssertionFailureMessage(\ | |
|         gtest_ar_, text, #actual, #expected).c_str()) | |
|  | |
| #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \ | |
|   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ | |
|   if (::testing::internal::AlwaysTrue()) { \ | |
|     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \ | |
|     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ | |
|     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \ | |
|       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \ | |
|     } \ | |
|   } else \ | |
|     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \ | |
|       fail("Expected: " #statement " doesn't generate new fatal " \ | |
|            "failures in the current thread.\n" \ | |
|            "  Actual: it does.") | |
|  | |
| // Expands to the name of the class that implements the given test. | |
| #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \ | |
|   test_case_name##_##test_name##_Test | |
|  | |
| // Helper macro for defining tests. | |
| #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\ | |
| class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\ | |
|  public:\ | |
|   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\ | |
|  private:\ | |
|   virtual void TestBody();\ | |
|   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\ | |
|   GTEST_DISALLOW_COPY_AND_ASSIGN_(\ | |
|       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\ | |
| };\ | |
| \ | |
| ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\ | |
|   ::test_info_ =\ | |
|     ::testing::internal::MakeAndRegisterTestInfo(\ | |
|         #test_case_name, #test_name, NULL, NULL, \ | |
|         (parent_id), \ | |
|         parent_class::SetUpTestCase, \ | |
|         parent_class::TearDownTestCase, \ | |
|         new ::testing::internal::TestFactoryImpl<\ | |
|             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\ | |
| void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() | |
|  | |
| #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
 |