You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							177 lines
						
					
					
						
							7.9 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							177 lines
						
					
					
						
							7.9 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
|  | |
| template<typename MatrixType> void product_extra(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef Matrix<Scalar, 1, Dynamic> RowVectorType; | |
|   typedef Matrix<Scalar, Dynamic, 1> ColVectorType; | |
|   typedef Matrix<Scalar, Dynamic, Dynamic, | |
|                          MatrixType::Flags&RowMajorBit> OtherMajorMatrixType; | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   MatrixType m1 = MatrixType::Random(rows, cols), | |
|              m2 = MatrixType::Random(rows, cols), | |
|              m3(rows, cols), | |
|              mzero = MatrixType::Zero(rows, cols), | |
|              identity = MatrixType::Identity(rows, rows), | |
|              square = MatrixType::Random(rows, rows), | |
|              res = MatrixType::Random(rows, rows), | |
|              square2 = MatrixType::Random(cols, cols), | |
|              res2 = MatrixType::Random(cols, cols); | |
|   RowVectorType v1 = RowVectorType::Random(rows), vrres(rows); | |
|   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); | |
|   OtherMajorMatrixType tm1 = m1; | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>(), | |
|          s2 = internal::random<Scalar>(), | |
|          s3 = internal::random<Scalar>(); | |
| 
 | |
|   VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(),                 m1 * m2.adjoint().eval()); | |
|   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(),   m1.adjoint().eval() * square.adjoint().eval()); | |
|   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2,                 m1.adjoint().eval() * m2); | |
|   VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2,          (s1 * m1.adjoint()).eval() * m2); | |
|   VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2,        (numext::conj(s1) * m1.adjoint()).eval() * m2); | |
|   VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint()  * s1).eval() * (s3 * m2).eval()); | |
|   VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2,     (s2 * m1.adjoint()  * s1).eval() * m2); | |
|   VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(),        (-m1*s2).eval() * (s1*m2.adjoint()).eval()); | |
| 
 | |
|   // a very tricky case where a scale factor has to be automatically conjugated: | |
|   VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval()); | |
| 
 | |
| 
 | |
|   // test all possible conjugate combinations for the four matrix-vector product cases: | |
|  | |
|   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2), | |
|                    (-m1.conjugate()*s2).eval() * (s1 * vc2).eval()); | |
|   VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()), | |
|                    (-m1*s2).eval() * (s1 * vc2.conjugate()).eval()); | |
|   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()), | |
|                    (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval()); | |
| 
 | |
|   VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2), | |
|                    (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval()); | |
|   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2), | |
|                    (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval()); | |
|   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2), | |
|                    (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval()); | |
| 
 | |
|   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()), | |
|                    (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval()); | |
|   VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()), | |
|                    (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval()); | |
|   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), | |
|                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval()); | |
| 
 | |
|   VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2), | |
|                    (s1 * v1).eval() * (-m1.conjugate()*s2).eval()); | |
|   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2), | |
|                    (s1 * v1.conjugate()).eval() * (-m1*s2).eval()); | |
|   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2), | |
|                    (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval()); | |
| 
 | |
|   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), | |
|                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval()); | |
| 
 | |
|   // test the vector-matrix product with non aligned starts | |
|   Index i = internal::random<Index>(0,m1.rows()-2); | |
|   Index j = internal::random<Index>(0,m1.cols()-2); | |
|   Index r = internal::random<Index>(1,m1.rows()-i); | |
|   Index c = internal::random<Index>(1,m1.cols()-j); | |
|   Index i2 = internal::random<Index>(0,m1.rows()-1); | |
|   Index j2 = internal::random<Index>(0,m1.cols()-1); | |
| 
 | |
|   VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval()); | |
|   VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval()); | |
|    | |
|   // regression test | |
|   MatrixType tmp = m1 * m1.adjoint() * s1; | |
|   VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1); | |
| } | |
| 
 | |
| // Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947 | |
| void mat_mat_scalar_scalar_product() | |
| { | |
|   Eigen::Matrix2Xd dNdxy(2, 3); | |
|   dNdxy << -0.5, 0.5, 0, | |
|            -0.3, 0, 0.3; | |
|   double det = 6.0, wt = 0.5; | |
|   VERIFY_IS_APPROX(dNdxy.transpose()*dNdxy*det*wt, det*wt*dNdxy.transpose()*dNdxy); | |
| } | |
|    | |
| void zero_sized_objects() | |
| { | |
|   // Bug 127 | |
|   // | |
|   // a product of the form lhs*rhs with | |
|   // | |
|   // lhs: | |
|   // rows = 1, cols = 4 | |
|   // RowsAtCompileTime = 1, ColsAtCompileTime = -1 | |
|   // MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5 | |
|   // | |
|   // rhs: | |
|   // rows = 4, cols = 0 | |
|   // RowsAtCompileTime = -1, ColsAtCompileTime = -1 | |
|   // MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1 | |
|   // | |
|   // was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using the | |
|   // max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1. | |
|  | |
|   Matrix<float,1,Dynamic,RowMajor,1,5> a(1,4); | |
|   Matrix<float,Dynamic,Dynamic,ColMajor,5,1> b(4,0); | |
|   a*b; | |
| } | |
| 
 | |
| void unaligned_objects() | |
| { | |
|   // Regression test for the bug reported here: | |
|   // http://forum.kde.org/viewtopic.php?f=74&t=107541 | |
|   // Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then. | |
|   // There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases, | |
|   // memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault. | |
|   for(int m=450;m<460;++m) | |
|   { | |
|     for(int n=8;n<12;++n) | |
|     { | |
|       MatrixXf M(m, n); | |
|       VectorXf v1(n), r1(500); | |
|       RowVectorXf v2(m), r2(16); | |
| 
 | |
|       M.setRandom(); | |
|       v1.setRandom(); | |
|       v2.setRandom(); | |
|       for(int o=0; o<4; ++o) | |
|       { | |
|         r1.segment(o,m).noalias() = M * v1; | |
|         VERIFY_IS_APPROX(r1.segment(o,m), M * MatrixXf(v1)); | |
|         r2.segment(o,n).noalias() = v2 * M; | |
|         VERIFY_IS_APPROX(r2.segment(o,n), MatrixXf(v2) * M); | |
|       } | |
|     } | |
|   } | |
| } | |
| 
 | |
| void test_product_extra() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( product_extra(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_2( product_extra(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_2( mat_mat_scalar_scalar_product() ); | |
|     CALL_SUBTEST_3( product_extra(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); | |
|     CALL_SUBTEST_4( product_extra(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); | |
|   } | |
|   CALL_SUBTEST_5( zero_sized_objects() ); | |
|   CALL_SUBTEST_6( unaligned_objects() ); | |
| }
 |