751 lines
45 KiB

//
// Created by Jip Spel on 05.09.18.
//
#include "MonotonicityChecker.h"
#include "storm-pars/analysis/AssumptionMaker.h"
#include "storm-pars/analysis/AssumptionChecker.h"
#include "storm-pars/analysis/Lattice.h"
#include "storm-pars/analysis/LatticeExtender.h"
#include "storm/exceptions/NotSupportedException.h"
#include "storm/exceptions/UnexpectedException.h"
#include "storm/exceptions/InvalidOperationException.h"
#include "storm/utility/Stopwatch.h"
#include "storm/models/ModelType.h"
#include "storm/api/verification.h"
#include "storm-pars/api/storm-pars.h"
#include "storm/modelchecker/results/CheckResult.h"
#include "storm/modelchecker/results/ExplicitQuantitativeCheckResult.h"
#include "storm-pars/modelchecker/region/SparseDtmcParameterLiftingModelChecker.h"
#include "storm/solver/Z3SmtSolver.h"
#include "storm/storage/expressions/ExpressionManager.h"
#include "storm/storage/expressions/RationalFunctionToExpression.h"
namespace storm {
namespace analysis {
template <typename ValueType>
MonotonicityChecker<ValueType>::MonotonicityChecker(std::shared_ptr<storm::models::ModelBase> model, std::vector<std::shared_ptr<storm::logic::Formula const>> formulas, bool validate, bool sccElimination) {
outfile.open(filename, std::ios_base::app);
this->model = model;
this->formulas = formulas;
this->validate = validate;
this->sccElimination = sccElimination;
this->resultCheckOnSamples = std::map<carl::Variable, std::pair<bool, bool>>();
if (model != nullptr) {
std::shared_ptr<storm::models::sparse::Model<ValueType>> sparseModel = model->as<storm::models::sparse::Model<ValueType>>();
this->extender = new storm::analysis::LatticeExtender<ValueType>(sparseModel);
outfile << model->getNumberOfStates() << ", " << model->getNumberOfTransitions() << ", ";
}
outfile.close();
totalWatch = storm::utility::Stopwatch(true);
}
template <typename ValueType>
std::map<storm::analysis::Lattice*, std::map<carl::Variable, std::pair<bool, bool>>> MonotonicityChecker<ValueType>::checkMonotonicity() {
// TODO: check on samples or not?
totalWatch = storm::utility::Stopwatch(true);
auto latticeWatch = storm::utility::Stopwatch(true);
auto map = createLattice();
// STORM_PRINT(std::endl << "Time for creating lattice: " << latticeWatch << "." << std::endl << std::endl);
std::shared_ptr<storm::models::sparse::Model<ValueType>> sparseModel = model->as<storm::models::sparse::Model<ValueType>>();
auto matrix = sparseModel->getTransitionMatrix();
return checkMonotonicity(map, matrix);
}
template <typename ValueType>
std::vector<storm::storage::ParameterRegion<ValueType>> MonotonicityChecker<ValueType>::checkAssumptionsOnRegion(std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>> assumptions) {
assert (formulas[0]->isProbabilityOperatorFormula());
assert (formulas[0]->asProbabilityOperatorFormula().getSubformula().isUntilFormula() || formulas[0]->asProbabilityOperatorFormula().getSubformula().isEventuallyFormula());
Environment env = Environment();
std::shared_ptr<storm::models::sparse::Model<ValueType>> sparseModel = model->as<storm::models::sparse::Model<ValueType>>();
bool generateSplitEstimates = false;
bool allowModelSimplification = false;
auto task = storm::api::createTask<ValueType>(formulas[0], true);
// TODO: storm::RationalNumber or double?
// TODO: Also allow different models
STORM_LOG_THROW (sparseModel->isOfType(storm::models::ModelType::Dtmc), storm::exceptions::NotImplementedException,
"Checking assumptions on a region not implemented for this type of model");
auto modelChecker = storm::api::initializeParameterLiftingDtmcModelChecker<ValueType, storm::RationalNumber>(env, sparseModel, task, generateSplitEstimates, allowModelSimplification);
std::stack<std::pair<storm::storage::ParameterRegion<ValueType>, int>> regions;
std::vector<storm::storage::ParameterRegion<ValueType>> satRegions;
std::string regionText = "";
auto parameters = storm::models::sparse::getProbabilityParameters(*sparseModel);
for (auto itr = parameters.begin(); itr != parameters.end(); ++itr) {
if (regionText != "") {
regionText += ",";
}
// TODO: region bounds
regionText += "0.1 <= " + itr->name() + " <= 0.9";
}
auto initialRegion = storm::api::parseRegion<ValueType>(regionText, parameters);
regions.push(std::pair<storm::storage::ParameterRegion<ValueType>, int>(initialRegion,0));
while (!regions.empty()) {
auto lastElement = regions.top();
regions.pop();
storm::storage::ParameterRegion<ValueType> currentRegion = lastElement.first;
// TODO: depth
if (lastElement.second < 5) {
auto upperBound = modelChecker->getBound(env, currentRegion, storm::solver::OptimizationDirection::Maximize);
auto lowerBound = modelChecker->getBound(env, currentRegion, storm::solver::OptimizationDirection::Minimize);
std::vector<storm::RationalNumber> valuesUpper = upperBound->template asExplicitQuantitativeCheckResult<storm::RationalNumber>().getValueVector();
std::vector<storm::RationalNumber> valuesLower = lowerBound->template asExplicitQuantitativeCheckResult<storm::RationalNumber>().getValueVector();
bool assumptionsHold = true;
for (auto itr = assumptions.begin(); assumptionsHold && itr != assumptions.end(); ++itr) {
auto assumption = *itr;
if (assumption->getRelationType() == storm::expressions::BinaryRelationExpression::RelationType::Greater) {
auto state1 = std::stoi(
assumption->getFirstOperand()->asVariableExpression().getVariableName());
auto state2 = std::stoi(
assumption->getSecondOperand()->asVariableExpression().getVariableName());
assumptionsHold &= valuesLower[state1] >= valuesUpper[state2];
} else if (assumption->getRelationType() == storm::expressions::BinaryRelationExpression::RelationType::Equal) {
auto state1 = std::stoi(
assumption->getFirstOperand()->asVariableExpression().getVariableName());
auto state2 = std::stoi(
assumption->getSecondOperand()->asVariableExpression().getVariableName());
assumptionsHold &= valuesLower[state1] == valuesUpper[state2];
} else {
assert(false);
}
}
if (!assumptionsHold) {
std::vector<storm::storage::ParameterRegion<ValueType>> newRegions;
currentRegion.split(currentRegion.getCenterPoint(), newRegions);
for (auto itr = newRegions.begin(); itr != newRegions.end(); ++itr) {
regions.push(std::pair<storm::storage::ParameterRegion<ValueType>, int>(*itr,
lastElement.second +
1));
}
} else {
satRegions.push_back(currentRegion);
}
}
}
return satRegions;
}
template <typename ValueType>
std::map<storm::analysis::Lattice*, std::map<carl::Variable, std::pair<bool, bool>>> MonotonicityChecker<ValueType>::checkMonotonicity(std::map<storm::analysis::Lattice*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>> map, storm::storage::SparseMatrix<ValueType> matrix) {
storm::utility::Stopwatch monotonicityCheckWatch(true);
std::map<storm::analysis::Lattice *, std::map<carl::Variable, std::pair<bool, bool>>> result;
outfile.open(filename, std::ios_base::app);
if (map.size() == 0) {
// Nothing is known
outfile << " No assumptions; ?";
// STORM_PRINT(std::endl << "Do not know about monotonicity" << std::endl);
} else {
auto i = 0;
for (auto itr = map.begin(); i < map.size() && itr != map.end(); ++itr) {
auto lattice = itr->first;
auto addedStates = lattice->getAddedStates().getNumberOfSetBits();
assert (addedStates == lattice->getAddedStates().size());
std::map<carl::Variable, std::pair<bool, bool>> varsMonotone = analyseMonotonicity(i, lattice,
matrix);
auto assumptions = itr->second;
bool validSomewhere = false;
for (auto itr2 = varsMonotone.begin(); !validSomewhere && itr2 != varsMonotone.end(); ++itr2) {
validSomewhere = itr2->second.first || itr2->second.second;
}
if (assumptions.size() > 0) {
// auto regions = checkAssumptionsOnRegion(assumptions);
// if (regions.size() > 0) {
// // STORM_PRINT("For regions: " << std::endl);
// bool first = true;
// for (auto itr2 = regions.begin(); itr2 != regions.end(); ++itr2) {
// if (first) {
// // STORM_PRINT(" ");
// first = false;
// }
// // STORM_PRINT(*itr2);
// outfile << (*itr2);
// }
// // STORM_PRINT(std::endl);
// outfile << ", ";
// } else {
// STORM_PRINT("Assumption(s): ");
bool first = true;
for (auto itr2 = assumptions.begin(); itr2 != assumptions.end(); ++itr2) {
if (!first) {
// STORM_PRINT(" ^ ");
outfile << (" ^ ");
} else {
first = false;
}
// STORM_PRINT(*(*itr2));
outfile << (*(*itr2));
}
// STORM_PRINT(std::endl);
outfile << " - ";
// }
} else if (assumptions.size() == 0) {
outfile << "No assumptions - ";
}
if (validSomewhere && varsMonotone.size() == 0) {
// STORM_PRINT("Result is constant" << std::endl);
outfile << "No params";
} else if (validSomewhere) {
auto itr2 = varsMonotone.begin();
while (itr2 != varsMonotone.end()) {
// if (resultCheckOnSamples.find(itr2->first) != resultCheckOnSamples.end() &&
// (!resultCheckOnSamples[itr2->first].first &&
// !resultCheckOnSamples[itr2->first].second)) {
// // STORM_PRINT(" - Not monotone in: " << itr2->first << std::endl);
// outfile << "X " << itr2->first;
// } else {
if (itr2->second.first && itr2->second.second) {
// STORM_PRINT(" - Constant in" << itr2->first << std::endl);
outfile << "C " << itr2->first;
} else if (itr2->second.first) {
// STORM_PRINT(" - Monotone increasing in: " << itr2->first << std::endl);
outfile << "I " << itr2->first;
} else if (itr2->second.second) {
// STORM_PRINT(" - Monotone decreasing in: " << itr2->first << std::endl);
outfile << "D " << itr2->first;
} else {
// STORM_PRINT(" - Do not know if monotone incr/decreasing in: " << itr2->first << std::endl);
outfile << "? " << itr2->first;
}
// }
++itr2;
if (itr2 != varsMonotone.end()) {
outfile << " ";
}
}
result.insert(
std::pair<storm::analysis::Lattice *, std::map<carl::Variable, std::pair<bool, bool>>>(
lattice, varsMonotone));
} else {
result.insert(
std::pair<storm::analysis::Lattice *, std::map<carl::Variable, std::pair<bool, bool>>>(
lattice, varsMonotone));
outfile << "no monotonicity found";
}
++i;
outfile << ";";
}
}
outfile << ", ";
monotonicityCheckWatch.stop();
outfile << monotonicityCheckWatch << ", ";
// STORM_PRINT(std::endl << "Time for monotonicity check on lattice: " << monotonicityCheckWatch << "." << std::endl << std::endl);
outfile.close();
return result;
}
template <typename ValueType>
std::map<storm::analysis::Lattice*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>> MonotonicityChecker<ValueType>::createLattice() {
// Transform to Lattices
storm::utility::Stopwatch latticeWatch(true);
std::tuple<storm::analysis::Lattice*, uint_fast64_t, uint_fast64_t> criticalTuple = extender->toLattice(formulas);
std::map<storm::analysis::Lattice*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>> result;
auto val1 = std::get<1>(criticalTuple);
auto val2 = std::get<2>(criticalTuple);
auto numberOfStates = model->getNumberOfStates();
std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>> assumptions;
if (val1 == numberOfStates && val2 == numberOfStates) {
result.insert(std::pair<storm::analysis::Lattice*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>>(std::get<0>(criticalTuple), assumptions));
} else if (val1 != numberOfStates && val2 != numberOfStates) {
storm::analysis::AssumptionChecker<ValueType> *assumptionChecker;
if (model->isOfType(storm::models::ModelType::Dtmc)) {
auto dtmc = model->as<storm::models::sparse::Dtmc<ValueType>>();
assumptionChecker = new storm::analysis::AssumptionChecker<ValueType>(formulas[0], dtmc, 3);
} else if (model->isOfType(storm::models::ModelType::Mdp)) {
auto mdp = model->as<storm::models::sparse::Mdp<ValueType>>();
assumptionChecker = new storm::analysis::AssumptionChecker<ValueType>(formulas[0], mdp, 3);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException,
"Unable to perform monotonicity analysis on the provided model type.");
}
auto assumptionMaker = new storm::analysis::AssumptionMaker<ValueType>(assumptionChecker, numberOfStates, validate);
result = extendLatticeWithAssumptions(std::get<0>(criticalTuple), assumptionMaker, val1, val2, assumptions);
} else {
assert(false);
}
latticeWatch.stop();
// STORM_PRINT(std::endl << "Total time for lattice creation: " << latticeWatch << "." << std::endl << std::endl);
outfile.open(filename, std::ios_base::app);
outfile << latticeWatch << ", ";
outfile.close();
return result;
}
template <typename ValueType>
std::map<storm::analysis::Lattice*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>> MonotonicityChecker<ValueType>::extendLatticeWithAssumptions(storm::analysis::Lattice* lattice, storm::analysis::AssumptionMaker<ValueType>* assumptionMaker, uint_fast64_t val1, uint_fast64_t val2, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>> assumptions) {
std::map<storm::analysis::Lattice*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>> result;
auto numberOfStates = model->getNumberOfStates();
if (val1 == numberOfStates || val2 == numberOfStates) {
assert (val1 == val2);
assert (lattice->getAddedStates().size() == lattice->getAddedStates().getNumberOfSetBits());
result.insert(std::pair<storm::analysis::Lattice*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>>(lattice, assumptions));
} else {
auto assumptionTriple = assumptionMaker->createAndCheckAssumption(val1, val2, lattice);
assert (assumptionTriple.size() == 3);
auto itr = assumptionTriple.begin();
auto assumption1 = *itr;
++itr;
auto assumption2 = *itr;
++itr;
auto assumption3 = *itr;
if (!assumption1.second && !assumption2.second && !assumption3.second) {
// Both assumption cannot be validated, so we need to keep them both
// TODO: hier niet verder gaan als je iets gevonden hebt?
auto assumptionsCopy = std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>(
assumptions);
auto assumptionsCopy2 = std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>(
assumptions);
auto latticeCopy = new storm::analysis::Lattice(lattice);
auto latticeCopy2 = new storm::analysis::Lattice(lattice);
assumptions.push_back(assumption1.first);
assumptionsCopy.push_back(assumption2.first);
assumptionsCopy2.push_back(assumption2.first);
auto criticalTuple = extender->extendLattice(lattice, assumption1.first);
if (somewhereMonotonicity(std::get<0>(criticalTuple))) {
auto map = extendLatticeWithAssumptions(std::get<0>(criticalTuple), assumptionMaker,
std::get<1>(criticalTuple), std::get<2>(criticalTuple),
assumptions);
result.insert(map.begin(), map.end());
}
criticalTuple = extender->extendLattice(latticeCopy, assumption2.first);
if (somewhereMonotonicity(std::get<0>(criticalTuple))) {
auto map = extendLatticeWithAssumptions(std::get<0>(criticalTuple), assumptionMaker,
std::get<1>(criticalTuple), std::get<2>(criticalTuple),
assumptionsCopy);
result.insert(map.begin(), map.end());
}
criticalTuple = extender->extendLattice(latticeCopy2, assumption3.first);
if (somewhereMonotonicity(std::get<0>(criticalTuple))) {
auto map = extendLatticeWithAssumptions(std::get<0>(criticalTuple), assumptionMaker,
std::get<1>(criticalTuple), std::get<2>(criticalTuple),
assumptionsCopy2);
result.insert(map.begin(), map.end());
}
}
// } else if (assumption1.second && assumption2.second) {
// assert (false);
// //TODO Both assumptions hold --> should not happen if we change it to < instead of <=
// auto assumption = assumptionMaker->createEqualAssumption(val1, val2);
// if (!validate) {
// assumptions.push_back(assumption);
// }
// // if validate is true and both hold, then they must be valid, so no need to add to assumptions
// auto criticalTuple = extender->extendLattice(lattice, assumption);
// if (somewhereMonotonicity(std::get<0>(criticalTuple))) {
// result = extendLatticeWithAssumptions(std::get<0>(criticalTuple), assumptionMaker, std::get<1>(criticalTuple), std::get<2>(criticalTuple), assumptions);
// }
// } else if (assumption1.second) {
// if (!validate) {
// assert(false);
// assumptions.push_back(assumption1.first);
// }
// // if validate is true and both hold, then they must be valid, so no need to add to assumptions
//
// auto criticalTuple = extender->extendLattice(lattice, assumption1.first);
//
// if (somewhereMonotonicity(std::get<0>(criticalTuple))) {
// result = extendLatticeWithAssumptions(std::get<0>(criticalTuple), assumptionMaker, std::get<1>(criticalTuple), std::get<2>(criticalTuple), assumptions);
// }
//
// } else {
// assert (assumption2.second);
// if (!validate) {
// assumptions.push_back(assumption2.first);
// }
// // if validate is true and both hold, then they must be valid, so no need to add to assumptions
// auto criticalTuple = extender->extendLattice(lattice, assumption2.first);
// if (somewhereMonotonicity(std::get<0>(criticalTuple))) {
// result = extendLatticeWithAssumptions(std::get<0>(criticalTuple), assumptionMaker, std::get<1>(criticalTuple), std::get<2>(criticalTuple), assumptions);
// }
// }
}
return result;
}
template <typename ValueType>
std::map<carl::Variable, std::pair<bool, bool>> MonotonicityChecker<ValueType>::analyseMonotonicity(uint_fast64_t j, storm::analysis::Lattice* lattice, storm::storage::SparseMatrix<ValueType> matrix) {
// storm::utility::Stopwatch analyseWatch(true);
std::map<carl::Variable, std::pair<bool, bool>> varsMonotone;
for (uint_fast64_t i = 0; i < matrix.getColumnCount(); ++i) {
// go over all rows
auto row = matrix.getRow(i);
auto first = (*row.begin());
if (first.getValue() != ValueType(1)) {
std::map<uint_fast64_t, ValueType> transitions;
for (auto itr = row.begin(); itr != row.end(); ++itr) {
transitions.insert(std::pair<uint_fast64_t, ValueType>((*itr).getColumn(), (*itr).getValue()));
}
auto val = first.getValue();
auto vars = val.gatherVariables();
for (auto itr = vars.begin(); itr != vars.end(); ++itr) {
// if (resultCheckOnSamples.find(*itr) != resultCheckOnSamples.end() &&
// (!resultCheckOnSamples[*itr].first && !resultCheckOnSamples[*itr].second)) {
// if (varsMonotone.find(*itr) == varsMonotone.end()) {
// varsMonotone[*itr].first = false;
// varsMonotone[*itr].second = false;
// }
// } else {
if (varsMonotone.find(*itr) == varsMonotone.end()) {
varsMonotone[*itr].first = true;
varsMonotone[*itr].second = true;
}
std::pair<bool, bool> *value = &varsMonotone.find(*itr)->second;
std::pair<bool, bool> old = *value;
for (auto itr2 = transitions.begin(); itr2 != transitions.end(); ++itr2) {
for (auto itr3 = transitions.begin(); itr3 != transitions.end(); ++itr3) {
auto derivative2 = itr2->second.derivative(*itr);
auto derivative3 = itr3->second.derivative(*itr);
auto compare = lattice->compare(itr2->first, itr3->first);
if (compare == storm::analysis::Lattice::ABOVE) {
// As the first state (itr2) is above the second state (itr3) it is sufficient to look at the derivative of itr2.
std::pair<bool,bool> mon2;
if (derivative2.isConstant()) {
mon2 = std::pair<bool,bool>(derivative2.constantPart() >= 0, derivative2.constantPart() <=0);
} else {
mon2 = checkDerivative(derivative2);
}
value->first &= mon2.first;
value->second &= mon2.second;
} else if (compare == storm::analysis::Lattice::BELOW) {
// As the second state (itr3) is above the first state (itr2) it is sufficient to look at the derivative of itr3.
std::pair<bool,bool> mon3;
if (derivative2.isConstant()) {
mon3 = std::pair<bool,bool>(derivative3.constantPart() >= 0, derivative3.constantPart() <=0);
} else {
mon3 = checkDerivative(derivative3);
}
value->first &= mon3.first;
value->second &= mon3.second;
} else if (compare == storm::analysis::Lattice::SAME) {
// TODO: klopt dit
// Behaviour doesn't matter, as the states are at the same level.
} else {
// As the relation between the states is unknown, we can't claim anything about the monotonicity.
value->first = false;
value->second = false;
}
// }
}
}
}
}
}
// analyseWatch.stop();
// STORM_PRINT(std::endl << "Time to check monotonicity based on the lattice: " << analyseWatch << "." << std::endl << std::endl);
// outfile << analyseWatch << "; ";
return varsMonotone;
}
template <typename ValueType>
std::pair<bool, bool> MonotonicityChecker<ValueType>::checkDerivative(ValueType derivative) {
bool monIncr = false;
bool monDecr = false;
if (derivative.isZero()) {
monIncr = true;
monDecr = true;
} else {
std::shared_ptr<storm::utility::solver::SmtSolverFactory> smtSolverFactory = std::make_shared<storm::utility::solver::MathsatSmtSolverFactory>();
std::shared_ptr<storm::expressions::ExpressionManager> manager(
new storm::expressions::ExpressionManager());
storm::solver::Z3SmtSolver s(*manager);
storm::solver::SmtSolver::CheckResult smtResult = storm::solver::SmtSolver::CheckResult::Unknown;
std::set<carl::Variable> variables = derivative.gatherVariables();
for (auto variable : variables) {
manager->declareRationalVariable(variable.name());
}
storm::expressions::Expression exprBounds = manager->boolean(true);
auto managervars = manager->getVariables();
for (auto var : managervars) {
exprBounds = exprBounds && manager->rational(0) <= var && manager->rational(1) >= var;
}
auto converter = storm::expressions::RationalFunctionToExpression<ValueType>(manager);
storm::expressions::Expression exprToCheck1 =
converter.toExpression(derivative) >= manager->rational(0);
s.add(exprBounds);
s.add(exprToCheck1);
smtResult = s.check();
monIncr = smtResult == storm::solver::SmtSolver::CheckResult::Sat;
storm::expressions::Expression exprToCheck2 =
converter.toExpression(derivative) <= manager->rational(0);
s.reset();
smtResult = storm::solver::SmtSolver::CheckResult::Unknown;
s.add(exprBounds);
s.add(exprToCheck2);
smtResult = s.check();
monDecr = smtResult == storm::solver::SmtSolver::CheckResult::Sat;
}
assert (!(monIncr && monDecr) || derivative.isZero());
return std::pair<bool, bool>(monIncr, monDecr);
}
template <typename ValueType>
bool MonotonicityChecker<ValueType>::somewhereMonotonicity(storm::analysis::Lattice* lattice) {
std::shared_ptr<storm::models::sparse::Model<ValueType>> sparseModel = model->as<storm::models::sparse::Model<ValueType>>();
auto matrix = sparseModel->getTransitionMatrix();
// TODO: tussenresultaten hergebruiken
std::map<carl::Variable, std::pair<bool, bool>> varsMonotone;
for (uint_fast64_t i = 0; i < matrix.getColumnCount(); ++i) {
// go over all rows
auto row = matrix.getRow(i);
auto first = (*row.begin());
if (first.getValue() != ValueType(1)) {
std::map<uint_fast64_t, ValueType> transitions;
for (auto itr = row.begin(); itr != row.end(); ++itr) {
transitions.insert(std::pair<uint_fast64_t, ValueType>((*itr).getColumn(), (*itr).getValue()));
}
auto val = first.getValue();
auto vars = val.gatherVariables();
for (auto itr = vars.begin(); itr != vars.end(); ++itr) {
if (varsMonotone.find(*itr) == varsMonotone.end()) {
varsMonotone[*itr].first = true;
varsMonotone[*itr].second = true;
}
std::pair<bool, bool> *value = &varsMonotone.find(*itr)->second;
std::pair<bool, bool> old = *value;
// TODO deze ook aanpassen aan deel met smt solver
for (auto itr2 = transitions.begin(); itr2 != transitions.end(); ++itr2) {
for (auto itr3 = transitions.begin(); itr3 != transitions.end(); ++itr3) {
auto derivative2 = itr2->second.derivative(*itr);
auto derivative3 = itr3->second.derivative(*itr);
auto compare = lattice->compare(itr2->first, itr3->first);
if (compare == storm::analysis::Lattice::ABOVE) {
// As the first state (itr2) is above the second state (itr3) it is sufficient to look at the derivative of itr2.
std::pair<bool,bool> mon2;
if (derivative2.isConstant()) {
mon2 = std::pair<bool,bool>(derivative2.constantPart() >= 0, derivative2.constantPart() <=0);
} else {
mon2 = checkDerivative(derivative2);
}
value->first &= mon2.first;
value->second &= mon2.second;
} else if (compare == storm::analysis::Lattice::BELOW) {
// As the second state (itr3) is above the first state (itr2) it is sufficient to look at the derivative of itr3.
std::pair<bool,bool> mon3;
if (derivative2.isConstant()) {
mon3 = std::pair<bool,bool>(derivative3.constantPart() >= 0, derivative3.constantPart() <=0);
} else {
mon3 = checkDerivative(derivative3);
}
value->first &= mon3.first;
value->second &= mon3.second;
} else if (compare == storm::analysis::Lattice::SAME) {
// TODO: klopt dit
// Behaviour doesn't matter, as the states are at the same level.
} else {
// As the relation between the states is unknown, we don't do anything
}
}
}
}
}
}
bool result = false;
for (auto itr = varsMonotone.begin(); !result && itr != varsMonotone.end(); ++itr) {
result = itr->second.first || itr->second.second;
}
return result;
}
template <typename ValueType>
std::map<carl::Variable, std::pair<bool, bool>> MonotonicityChecker<ValueType>::checkOnSamples(std::shared_ptr<storm::models::sparse::Dtmc<ValueType>> model, uint_fast64_t numberOfSamples) {
storm::utility::Stopwatch samplesWatch(true);
std::map<carl::Variable, std::pair<bool, bool>> result;
auto instantiator = storm::utility::ModelInstantiator<storm::models::sparse::Dtmc<ValueType>, storm::models::sparse::Dtmc<double>>(*model);
auto matrix = model->getTransitionMatrix();
std::set<carl::Variable> variables = storm::models::sparse::getProbabilityParameters(*model);
for (auto itr = variables.begin(); itr != variables.end(); ++itr) {
double previous = -1;
bool monDecr = true;
bool monIncr = true;
for (auto i = 0; i < numberOfSamples; ++i) {
auto valuation = storm::utility::parametric::Valuation<ValueType>();
for (auto itr2 = variables.begin(); itr2 != variables.end(); ++itr2) {
// Only change value for current variable
if ((*itr) == (*itr2)) {
auto val = std::pair<carl::Variable, storm::RationalFunctionCoefficient>(
(*itr2), storm::utility::convertNumber<storm::RationalFunctionCoefficient>(
boost::lexical_cast<std::string>((i + 1) / (double(numberOfSamples + 1)))));
valuation.insert(val);
} else {
auto val = std::pair<carl::Variable, storm::RationalFunctionCoefficient>(
(*itr2), storm::utility::convertNumber<storm::RationalFunctionCoefficient>(
boost::lexical_cast<std::string>((1) / (double(numberOfSamples + 1)))));
valuation.insert(val);
}
}
storm::models::sparse::Dtmc<double> sampleModel = instantiator.instantiate(valuation);
auto checker = storm::modelchecker::SparseDtmcPrctlModelChecker<storm::models::sparse::Dtmc<double>>(sampleModel);
std::unique_ptr<storm::modelchecker::CheckResult> checkResult;
auto formula = formulas[0];
if (formula->isProbabilityOperatorFormula() &&
formula->asProbabilityOperatorFormula().getSubformula().isUntilFormula()) {
const storm::modelchecker::CheckTask<storm::logic::UntilFormula, double> checkTask = storm::modelchecker::CheckTask<storm::logic::UntilFormula, double>(
(*formula).asProbabilityOperatorFormula().getSubformula().asUntilFormula());
checkResult = checker.computeUntilProbabilities(Environment(), checkTask);
} else if (formula->isProbabilityOperatorFormula() &&
formula->asProbabilityOperatorFormula().getSubformula().isEventuallyFormula()) {
const storm::modelchecker::CheckTask<storm::logic::EventuallyFormula, double> checkTask = storm::modelchecker::CheckTask<storm::logic::EventuallyFormula, double>(
(*formula).asProbabilityOperatorFormula().getSubformula().asEventuallyFormula());
checkResult = checker.computeReachabilityProbabilities(Environment(), checkTask);
} else {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException,
"Expecting until or eventually formula");
}
auto quantitativeResult = checkResult->asExplicitQuantitativeCheckResult<double>();
std::vector<double> values = quantitativeResult.getValueVector();
auto initialStates = model->getInitialStates();
double initial = 0;
for (auto i = initialStates.getNextSetIndex(0); i < model->getNumberOfStates(); i = initialStates.getNextSetIndex(i+1)) {
initial += values[i];
}
float diff = previous - initial;
// TODO: define precission
if (previous != -1 && diff > 0.000005 && diff < -0.000005) {
monDecr &= previous >= initial;
monIncr &= previous <= initial;
}
previous = initial;
}
result.insert(std::pair<carl::Variable, std::pair<bool, bool>>(*itr, std::pair<bool,bool>(monIncr, monDecr)));
}
samplesWatch.stop();
// STORM_PRINT(std::endl << "Time to check monotonicity on samples: " << samplesWatch << "." << std::endl << std::endl);
resultCheckOnSamples = result;
return result;
}
template <typename ValueType>
std::map<carl::Variable, std::pair<bool, bool>> MonotonicityChecker<ValueType>::checkOnSamples(std::shared_ptr<storm::models::sparse::Mdp<ValueType>> model, uint_fast64_t numberOfSamples) {
storm::utility::Stopwatch samplesWatch(true);
std::map<carl::Variable, std::pair<bool, bool>> result;
auto instantiator = storm::utility::ModelInstantiator<storm::models::sparse::Mdp<ValueType>, storm::models::sparse::Mdp<double>>(*model);
auto matrix = model->getTransitionMatrix();
std::set<carl::Variable> variables = storm::models::sparse::getProbabilityParameters(*model);
for (auto itr = variables.begin(); itr != variables.end(); ++itr) {
double previous = -1;
bool monDecr = true;
bool monIncr = true;
for (auto i = 0; i < numberOfSamples; ++i) {
auto valuation = storm::utility::parametric::Valuation<ValueType>();
for (auto itr2 = variables.begin(); itr2 != variables.end(); ++itr2) {
// Only change value for current variable
if ((*itr) == (*itr2)) {
auto val = std::pair<carl::Variable, storm::RationalFunctionCoefficient>(
(*itr2), storm::utility::convertNumber<storm::RationalFunctionCoefficient>(
boost::lexical_cast<std::string>((i + 1) / (double(numberOfSamples + 1)))));
valuation.insert(val);
} else {
auto val = std::pair<carl::Variable, storm::RationalFunctionCoefficient>(
(*itr2), storm::utility::convertNumber<storm::RationalFunctionCoefficient>(
boost::lexical_cast<std::string>((1) / (double(numberOfSamples + 1)))));
valuation.insert(val);
}
}
storm::models::sparse::Mdp<double> sampleModel = instantiator.instantiate(valuation);
auto checker = storm::modelchecker::SparseMdpPrctlModelChecker<storm::models::sparse::Mdp<double>>(sampleModel);
std::unique_ptr<storm::modelchecker::CheckResult> checkResult;
auto formula = formulas[0];
if (formula->isProbabilityOperatorFormula() &&
formula->asProbabilityOperatorFormula().getSubformula().isUntilFormula()) {
const storm::modelchecker::CheckTask<storm::logic::UntilFormula, double> checkTask = storm::modelchecker::CheckTask<storm::logic::UntilFormula, double>(
(*formula).asProbabilityOperatorFormula().getSubformula().asUntilFormula());
checkResult = checker.computeUntilProbabilities(Environment(), checkTask);
} else if (formula->isProbabilityOperatorFormula() &&
formula->asProbabilityOperatorFormula().getSubformula().isEventuallyFormula()) {
const storm::modelchecker::CheckTask<storm::logic::EventuallyFormula, double> checkTask = storm::modelchecker::CheckTask<storm::logic::EventuallyFormula, double>(
(*formula).asProbabilityOperatorFormula().getSubformula().asEventuallyFormula());
checkResult = checker.computeReachabilityProbabilities(Environment(), checkTask);
} else {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException,
"Expecting until or eventually formula");
}
auto quantitativeResult = checkResult->asExplicitQuantitativeCheckResult<double>();
std::vector<double> values = quantitativeResult.getValueVector();
auto initialStates = model->getInitialStates();
double initial = 0;
for (auto i = initialStates.getNextSetIndex(0); i < model->getNumberOfStates(); i = initialStates.getNextSetIndex(i+1)) {
initial += values[i];
}
if (previous != -1) {
monDecr &= previous >= initial;
monIncr &= previous <= initial;
}
previous = initial;
}
result.insert(std::pair<carl::Variable, std::pair<bool, bool>>(*itr, std::pair<bool,bool>(monIncr, monDecr)));
}
samplesWatch.stop();
// STORM_PRINT(std::endl << "Time to check monotonicity on samples: " << samplesWatch << "." << std::endl << std::endl);
resultCheckOnSamples = result;
return result;
}
template class MonotonicityChecker<storm::RationalFunction>;
}
}