260 lines
13 KiB

#include "src/solver/NativeLinearEquationSolver.h"
#include <utility>
#include "src/settings/SettingsManager.h"
#include "src/settings/modules/NativeEquationSolverSettings.h"
#include "src/utility/vector.h"
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/InvalidSettingsException.h"
namespace storm {
namespace solver {
template<typename ValueType>
NativeLinearEquationSolverSettings<ValueType>::NativeLinearEquationSolverSettings() {
storm::settings::modules::NativeEquationSolverSettings const& settings = storm::settings::getModule<storm::settings::modules::NativeEquationSolverSettings>();
storm::settings::modules::NativeEquationSolverSettings::LinearEquationMethod methodAsSetting = settings.getLinearEquationSystemMethod();
if (methodAsSetting == storm::settings::modules::NativeEquationSolverSettings::LinearEquationMethod::GaussSeidel) {
method = SolutionMethod::GaussSeidel;
} else if (methodAsSetting == storm::settings::modules::NativeEquationSolverSettings::LinearEquationMethod::Jacobi) {
method = SolutionMethod::Jacobi;
} else if (methodAsSetting == storm::settings::modules::NativeEquationSolverSettings::LinearEquationMethod::SOR) {
method = SolutionMethod::SOR;
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidSettingsException, "The selected solution technique is invalid for this solver.");
}
maximalNumberOfIterations = settings.getMaximalIterationCount();
precision = settings.getPrecision();
relative = settings.getConvergenceCriterion() == storm::settings::modules::NativeEquationSolverSettings::ConvergenceCriterion::Relative;
omega = storm::settings::getModule<storm::settings::modules::NativeEquationSolverSettings>().getOmega();
}
template<typename ValueType>
void NativeLinearEquationSolverSettings<ValueType>::setSolutionMethod(SolutionMethod const& method) {
this->method = method;
}
template<typename ValueType>
void NativeLinearEquationSolverSettings<ValueType>::setPrecision(ValueType precision) {
this->precision = precision;
}
template<typename ValueType>
void NativeLinearEquationSolverSettings<ValueType>::setMaximalNumberOfIterations(uint64_t maximalNumberOfIterations) {
this->maximalNumberOfIterations = maximalNumberOfIterations;
}
template<typename ValueType>
void NativeLinearEquationSolverSettings<ValueType>::setRelativeTerminationCriterion(bool value) {
this->relative = value;
}
template<typename ValueType>
void NativeLinearEquationSolverSettings<ValueType>::setOmega(ValueType omega) {
this->omega = omega;
}
template<typename ValueType>
typename NativeLinearEquationSolverSettings<ValueType>::SolutionMethod NativeLinearEquationSolverSettings<ValueType>::getSolutionMethod() const {
return method;
}
template<typename ValueType>
ValueType NativeLinearEquationSolverSettings<ValueType>::getPrecision() const {
return precision;
}
template<typename ValueType>
uint64_t NativeLinearEquationSolverSettings<ValueType>::getMaximalNumberOfIterations() const {
return maximalNumberOfIterations;
}
template<typename ValueType>
uint64_t NativeLinearEquationSolverSettings<ValueType>::getRelativeTerminationCriterion() const {
return relative;
}
template<typename ValueType>
ValueType NativeLinearEquationSolverSettings<ValueType>::getOmega() const {
return omega;
}
template<typename ValueType>
NativeLinearEquationSolver<ValueType>::NativeLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, NativeLinearEquationSolverSettings<ValueType> const& settings) : localA(nullptr), A(nullptr), settings(settings) {
this->setMatrix(A);
}
template<typename ValueType>
NativeLinearEquationSolver<ValueType>::NativeLinearEquationSolver(storm::storage::SparseMatrix<ValueType>&& A, NativeLinearEquationSolverSettings<ValueType> const& settings) : localA(nullptr), A(nullptr), settings(settings) {
this->setMatrix(std::move(A));
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::setMatrix(storm::storage::SparseMatrix<ValueType> const& A) {
localA.reset();
this->A = &A;
resetAuxiliaryData();
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::setMatrix(storm::storage::SparseMatrix<ValueType>&& A) {
localA = std::make_unique<storm::storage::SparseMatrix<ValueType>>(std::move(A));
this->A = localA.get();
resetAuxiliaryData();
}
template<typename ValueType>
bool NativeLinearEquationSolver<ValueType>::solveEquations(std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
if(!this->auxiliaryRowVector) {
this->auxiliaryRowVector = std::make_unique<std::vector<ValueType>>(getMatrixRowCount());
}
if (this->getSettings().getSolutionMethod() == NativeLinearEquationSolverSettings<ValueType>::SolutionMethod::SOR || this->getSettings().getSolutionMethod() == NativeLinearEquationSolverSettings<ValueType>::SolutionMethod::GaussSeidel) {
// Define the omega used for SOR.
ValueType omega = this->getSettings().getSolutionMethod() == NativeLinearEquationSolverSettings<ValueType>::SolutionMethod::SOR ? this->getSettings().getOmega() : storm::utility::one<ValueType>();
// Set up additional environment variables.
uint_fast64_t iterationCount = 0;
bool converged = false;
while (!converged && iterationCount < this->getSettings().getMaximalNumberOfIterations()) {
A->performSuccessiveOverRelaxationStep(omega, x, b);
// Now check if the process already converged within our precision.
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*this->auxiliaryRowVector, x, static_cast<ValueType>(this->getSettings().getPrecision()), this->getSettings().getRelativeTerminationCriterion()) || (this->hasCustomTerminationCondition() && this->getTerminationCondition().terminateNow(x));
// If we did not yet converge, we need to backup the contents of x.
if (!converged) {
*this->auxiliaryRowVector = x;
}
// Increase iteration count so we can abort if convergence is too slow.
++iterationCount;
}
return converged;
} else {
// Get a Jacobi decomposition of the matrix A.
if(!jacobiDecomposition) {
jacobiDecomposition = std::make_unique<std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>>>(A->getJacobiDecomposition());
}
storm::storage::SparseMatrix<ValueType> const& jacobiLU = jacobiDecomposition->first;
std::vector<ValueType> const& jacobiD = jacobiDecomposition->second;
std::vector<ValueType>* currentX = &x;
std::vector<ValueType>* nextX = this->auxiliaryRowVector.get();
// Set up additional environment variables.
uint_fast64_t iterationCount = 0;
bool converged = false;
while (!converged && iterationCount < this->getSettings().getMaximalNumberOfIterations() && !(this->hasCustomTerminationCondition() && this->getTerminationCondition().terminateNow(*currentX))) {
// Compute D^-1 * (b - LU * x) and store result in nextX.
jacobiLU.multiplyWithVector(*currentX, *nextX);
storm::utility::vector::subtractVectors(b, *nextX, *nextX);
storm::utility::vector::multiplyVectorsPointwise(jacobiD, *nextX, *nextX);
// Now check if the process already converged within our precision.
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *nextX, static_cast<ValueType>(this->getSettings().getPrecision()), this->getSettings().getRelativeTerminationCriterion());
// Swap the two pointers as a preparation for the next iteration.
std::swap(nextX, currentX);
// Increase iteration count so we can abort if convergence is too slow.
++iterationCount;
}
// If the last iteration did not write to the original x we have to swap the contents, because the
// output has to be written to the input parameter x.
if (currentX == this->auxiliaryRowVector.get()) {
std::swap(x, *currentX);
}
return iterationCount < this->getSettings().getMaximalNumberOfIterations();
}
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::multiply(std::vector<ValueType>& x, std::vector<ValueType> const* b, std::vector<ValueType>& result) const {
if (&x != &result) {
A->multiplyWithVector(x, result);
if (b != nullptr) {
storm::utility::vector::addVectors(result, *b, result);
}
} else {
// If the two vectors are aliases, we need to create a temporary.
if(!this->auxiliaryRowVector) {
this->auxiliaryRowVector = std::make_unique<std::vector<ValueType>>(getMatrixRowCount());
}
A->multiplyWithVector(x, *this->auxiliaryRowVector);
if (b != nullptr) {
storm::utility::vector::addVectors(*this->auxiliaryRowVector, *b, result);
} else {
result.swap(*this->auxiliaryRowVector);
}
}
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::setSettings(NativeLinearEquationSolverSettings<ValueType> const& newSettings) {
settings = newSettings;
}
template<typename ValueType>
NativeLinearEquationSolverSettings<ValueType> const& NativeLinearEquationSolver<ValueType>::getSettings() const {
return settings;
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::resetAuxiliaryData() const {
jacobiDecomposition.reset();
LinearEquationSolver<ValueType>::resetAuxiliaryData();
}
template<typename ValueType>
uint64_t NativeLinearEquationSolver<ValueType>::getMatrixRowCount() const {
return this->A->getRowCount();
}
template<typename ValueType>
uint64_t NativeLinearEquationSolver<ValueType>::getMatrixColumnCount() const {
return this->A->getColumnCount();
}
template<typename ValueType>
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> NativeLinearEquationSolverFactory<ValueType>::create(storm::storage::SparseMatrix<ValueType> const& matrix) const {
return std::make_unique<storm::solver::NativeLinearEquationSolver<ValueType>>(matrix, settings);
}
template<typename ValueType>
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> NativeLinearEquationSolverFactory<ValueType>::create(storm::storage::SparseMatrix<ValueType>&& matrix) const {
return std::make_unique<storm::solver::NativeLinearEquationSolver<ValueType>>(std::move(matrix), settings);
}
template<typename ValueType>
NativeLinearEquationSolverSettings<ValueType>& NativeLinearEquationSolverFactory<ValueType>::getSettings() {
return settings;
}
template<typename ValueType>
NativeLinearEquationSolverSettings<ValueType> const& NativeLinearEquationSolverFactory<ValueType>::getSettings() const {
return settings;
}
template<typename ValueType>
std::unique_ptr<LinearEquationSolverFactory<ValueType>> NativeLinearEquationSolverFactory<ValueType>::clone() const {
return std::make_unique<NativeLinearEquationSolverFactory<ValueType>>(*this);
}
// Explicitly instantiate the linear equation solver.
template class NativeLinearEquationSolverSettings<double>;
template class NativeLinearEquationSolver<double>;
template class NativeLinearEquationSolverFactory<double>;
}
}