You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							366 lines
						
					
					
						
							12 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							366 lines
						
					
					
						
							12 KiB
						
					
					
				|       SUBROUTINE CTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) | |
| *     .. Scalar Arguments .. | |
|       INTEGER INCX,K,LDA,N | |
|       CHARACTER DIAG,TRANS,UPLO | |
| *     .. | |
| *     .. Array Arguments .. | |
|       COMPLEX A(LDA,*),X(*) | |
| *     .. | |
| * | |
| *  Purpose | |
| *  ======= | |
| * | |
| *  CTBMV  performs one of the matrix-vector operations | |
| * | |
| *     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x, | |
| * | |
| *  where x is an n element vector and  A is an n by n unit, or non-unit, | |
| *  upper or lower triangular band matrix, with ( k + 1 ) diagonals. | |
| * | |
| *  Arguments | |
| *  ========== | |
| * | |
| *  UPLO   - CHARACTER*1. | |
| *           On entry, UPLO specifies whether the matrix is an upper or | |
| *           lower triangular matrix as follows: | |
| * | |
| *              UPLO = 'U' or 'u'   A is an upper triangular matrix. | |
| * | |
| *              UPLO = 'L' or 'l'   A is a lower triangular matrix. | |
| * | |
| *           Unchanged on exit. | |
| * | |
| *  TRANS  - CHARACTER*1. | |
| *           On entry, TRANS specifies the operation to be performed as | |
| *           follows: | |
| * | |
| *              TRANS = 'N' or 'n'   x := A*x. | |
| * | |
| *              TRANS = 'T' or 't'   x := A'*x. | |
| * | |
| *              TRANS = 'C' or 'c'   x := conjg( A' )*x. | |
| * | |
| *           Unchanged on exit. | |
| * | |
| *  DIAG   - CHARACTER*1. | |
| *           On entry, DIAG specifies whether or not A is unit | |
| *           triangular as follows: | |
| * | |
| *              DIAG = 'U' or 'u'   A is assumed to be unit triangular. | |
| * | |
| *              DIAG = 'N' or 'n'   A is not assumed to be unit | |
| *                                  triangular. | |
| * | |
| *           Unchanged on exit. | |
| * | |
| *  N      - INTEGER. | |
| *           On entry, N specifies the order of the matrix A. | |
| *           N must be at least zero. | |
| *           Unchanged on exit. | |
| * | |
| *  K      - INTEGER. | |
| *           On entry with UPLO = 'U' or 'u', K specifies the number of | |
| *           super-diagonals of the matrix A. | |
| *           On entry with UPLO = 'L' or 'l', K specifies the number of | |
| *           sub-diagonals of the matrix A. | |
| *           K must satisfy  0 .le. K. | |
| *           Unchanged on exit. | |
| * | |
| *  A      - COMPLEX          array of DIMENSION ( LDA, n ). | |
| *           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) | |
| *           by n part of the array A must contain the upper triangular | |
| *           band part of the matrix of coefficients, supplied column by | |
| *           column, with the leading diagonal of the matrix in row | |
| *           ( k + 1 ) of the array, the first super-diagonal starting at | |
| *           position 2 in row k, and so on. The top left k by k triangle | |
| *           of the array A is not referenced. | |
| *           The following program segment will transfer an upper | |
| *           triangular band matrix from conventional full matrix storage | |
| *           to band storage: | |
| * | |
| *                 DO 20, J = 1, N | |
| *                    M = K + 1 - J | |
| *                    DO 10, I = MAX( 1, J - K ), J | |
| *                       A( M + I, J ) = matrix( I, J ) | |
| *              10    CONTINUE | |
| *              20 CONTINUE | |
| * | |
| *           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) | |
| *           by n part of the array A must contain the lower triangular | |
| *           band part of the matrix of coefficients, supplied column by | |
| *           column, with the leading diagonal of the matrix in row 1 of | |
| *           the array, the first sub-diagonal starting at position 1 in | |
| *           row 2, and so on. The bottom right k by k triangle of the | |
| *           array A is not referenced. | |
| *           The following program segment will transfer a lower | |
| *           triangular band matrix from conventional full matrix storage | |
| *           to band storage: | |
| * | |
| *                 DO 20, J = 1, N | |
| *                    M = 1 - J | |
| *                    DO 10, I = J, MIN( N, J + K ) | |
| *                       A( M + I, J ) = matrix( I, J ) | |
| *              10    CONTINUE | |
| *              20 CONTINUE | |
| * | |
| *           Note that when DIAG = 'U' or 'u' the elements of the array A | |
| *           corresponding to the diagonal elements of the matrix are not | |
| *           referenced, but are assumed to be unity. | |
| *           Unchanged on exit. | |
| * | |
| *  LDA    - INTEGER. | |
| *           On entry, LDA specifies the first dimension of A as declared | |
| *           in the calling (sub) program. LDA must be at least | |
| *           ( k + 1 ). | |
| *           Unchanged on exit. | |
| * | |
| *  X      - COMPLEX          array of dimension at least | |
| *           ( 1 + ( n - 1 )*abs( INCX ) ). | |
| *           Before entry, the incremented array X must contain the n | |
| *           element vector x. On exit, X is overwritten with the | |
| *           tranformed vector x. | |
| * | |
| *  INCX   - INTEGER. | |
| *           On entry, INCX specifies the increment for the elements of | |
| *           X. INCX must not be zero. | |
| *           Unchanged on exit. | |
| * | |
| *  Further Details | |
| *  =============== | |
| * | |
| *  Level 2 Blas routine. | |
| * | |
| *  -- Written on 22-October-1986. | |
| *     Jack Dongarra, Argonne National Lab. | |
| *     Jeremy Du Croz, Nag Central Office. | |
| *     Sven Hammarling, Nag Central Office. | |
| *     Richard Hanson, Sandia National Labs. | |
| * | |
| *  ===================================================================== | |
| * | |
| *     .. Parameters .. | |
|       COMPLEX ZERO | |
|       PARAMETER (ZERO= (0.0E+0,0.0E+0)) | |
| *     .. | |
| *     .. Local Scalars .. | |
|       COMPLEX TEMP | |
|       INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L | |
|       LOGICAL NOCONJ,NOUNIT | |
| *     .. | |
| *     .. External Functions .. | |
|       LOGICAL LSAME | |
|       EXTERNAL LSAME | |
| *     .. | |
| *     .. External Subroutines .. | |
|       EXTERNAL XERBLA | |
| *     .. | |
| *     .. Intrinsic Functions .. | |
|       INTRINSIC CONJG,MAX,MIN | |
| *     .. | |
| * | |
| *     Test the input parameters. | |
| * | |
|       INFO = 0 | |
|       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN | |
|           INFO = 1 | |
|       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. | |
|      +         .NOT.LSAME(TRANS,'C')) THEN | |
|           INFO = 2 | |
|       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN | |
|           INFO = 3 | |
|       ELSE IF (N.LT.0) THEN | |
|           INFO = 4 | |
|       ELSE IF (K.LT.0) THEN | |
|           INFO = 5 | |
|       ELSE IF (LDA.LT. (K+1)) THEN | |
|           INFO = 7 | |
|       ELSE IF (INCX.EQ.0) THEN | |
|           INFO = 9 | |
|       END IF | |
|       IF (INFO.NE.0) THEN | |
|           CALL XERBLA('CTBMV ',INFO) | |
|           RETURN | |
|       END IF | |
| * | |
| *     Quick return if possible. | |
| * | |
|       IF (N.EQ.0) RETURN | |
| * | |
|       NOCONJ = LSAME(TRANS,'T') | |
|       NOUNIT = LSAME(DIAG,'N') | |
| * | |
| *     Set up the start point in X if the increment is not unity. This | |
| *     will be  ( N - 1 )*INCX   too small for descending loops. | |
| * | |
|       IF (INCX.LE.0) THEN | |
|           KX = 1 - (N-1)*INCX | |
|       ELSE IF (INCX.NE.1) THEN | |
|           KX = 1 | |
|       END IF | |
| * | |
| *     Start the operations. In this version the elements of A are | |
| *     accessed sequentially with one pass through A. | |
| * | |
|       IF (LSAME(TRANS,'N')) THEN | |
| * | |
| *         Form  x := A*x. | |
| * | |
|           IF (LSAME(UPLO,'U')) THEN | |
|               KPLUS1 = K + 1 | |
|               IF (INCX.EQ.1) THEN | |
|                   DO 20 J = 1,N | |
|                       IF (X(J).NE.ZERO) THEN | |
|                           TEMP = X(J) | |
|                           L = KPLUS1 - J | |
|                           DO 10 I = MAX(1,J-K),J - 1 | |
|                               X(I) = X(I) + TEMP*A(L+I,J) | |
|    10                     CONTINUE | |
|                           IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J) | |
|                       END IF | |
|    20             CONTINUE | |
|               ELSE | |
|                   JX = KX | |
|                   DO 40 J = 1,N | |
|                       IF (X(JX).NE.ZERO) THEN | |
|                           TEMP = X(JX) | |
|                           IX = KX | |
|                           L = KPLUS1 - J | |
|                           DO 30 I = MAX(1,J-K),J - 1 | |
|                               X(IX) = X(IX) + TEMP*A(L+I,J) | |
|                               IX = IX + INCX | |
|    30                     CONTINUE | |
|                           IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J) | |
|                       END IF | |
|                       JX = JX + INCX | |
|                       IF (J.GT.K) KX = KX + INCX | |
|    40             CONTINUE | |
|               END IF | |
|           ELSE | |
|               IF (INCX.EQ.1) THEN | |
|                   DO 60 J = N,1,-1 | |
|                       IF (X(J).NE.ZERO) THEN | |
|                           TEMP = X(J) | |
|                           L = 1 - J | |
|                           DO 50 I = MIN(N,J+K),J + 1,-1 | |
|                               X(I) = X(I) + TEMP*A(L+I,J) | |
|    50                     CONTINUE | |
|                           IF (NOUNIT) X(J) = X(J)*A(1,J) | |
|                       END IF | |
|    60             CONTINUE | |
|               ELSE | |
|                   KX = KX + (N-1)*INCX | |
|                   JX = KX | |
|                   DO 80 J = N,1,-1 | |
|                       IF (X(JX).NE.ZERO) THEN | |
|                           TEMP = X(JX) | |
|                           IX = KX | |
|                           L = 1 - J | |
|                           DO 70 I = MIN(N,J+K),J + 1,-1 | |
|                               X(IX) = X(IX) + TEMP*A(L+I,J) | |
|                               IX = IX - INCX | |
|    70                     CONTINUE | |
|                           IF (NOUNIT) X(JX) = X(JX)*A(1,J) | |
|                       END IF | |
|                       JX = JX - INCX | |
|                       IF ((N-J).GE.K) KX = KX - INCX | |
|    80             CONTINUE | |
|               END IF | |
|           END IF | |
|       ELSE | |
| * | |
| *        Form  x := A'*x  or  x := conjg( A' )*x. | |
| * | |
|           IF (LSAME(UPLO,'U')) THEN | |
|               KPLUS1 = K + 1 | |
|               IF (INCX.EQ.1) THEN | |
|                   DO 110 J = N,1,-1 | |
|                       TEMP = X(J) | |
|                       L = KPLUS1 - J | |
|                       IF (NOCONJ) THEN | |
|                           IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) | |
|                           DO 90 I = J - 1,MAX(1,J-K),-1 | |
|                               TEMP = TEMP + A(L+I,J)*X(I) | |
|    90                     CONTINUE | |
|                       ELSE | |
|                           IF (NOUNIT) TEMP = TEMP*CONJG(A(KPLUS1,J)) | |
|                           DO 100 I = J - 1,MAX(1,J-K),-1 | |
|                               TEMP = TEMP + CONJG(A(L+I,J))*X(I) | |
|   100                     CONTINUE | |
|                       END IF | |
|                       X(J) = TEMP | |
|   110             CONTINUE | |
|               ELSE | |
|                   KX = KX + (N-1)*INCX | |
|                   JX = KX | |
|                   DO 140 J = N,1,-1 | |
|                       TEMP = X(JX) | |
|                       KX = KX - INCX | |
|                       IX = KX | |
|                       L = KPLUS1 - J | |
|                       IF (NOCONJ) THEN | |
|                           IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) | |
|                           DO 120 I = J - 1,MAX(1,J-K),-1 | |
|                               TEMP = TEMP + A(L+I,J)*X(IX) | |
|                               IX = IX - INCX | |
|   120                     CONTINUE | |
|                       ELSE | |
|                           IF (NOUNIT) TEMP = TEMP*CONJG(A(KPLUS1,J)) | |
|                           DO 130 I = J - 1,MAX(1,J-K),-1 | |
|                               TEMP = TEMP + CONJG(A(L+I,J))*X(IX) | |
|                               IX = IX - INCX | |
|   130                     CONTINUE | |
|                       END IF | |
|                       X(JX) = TEMP | |
|                       JX = JX - INCX | |
|   140             CONTINUE | |
|               END IF | |
|           ELSE | |
|               IF (INCX.EQ.1) THEN | |
|                   DO 170 J = 1,N | |
|                       TEMP = X(J) | |
|                       L = 1 - J | |
|                       IF (NOCONJ) THEN | |
|                           IF (NOUNIT) TEMP = TEMP*A(1,J) | |
|                           DO 150 I = J + 1,MIN(N,J+K) | |
|                               TEMP = TEMP + A(L+I,J)*X(I) | |
|   150                     CONTINUE | |
|                       ELSE | |
|                           IF (NOUNIT) TEMP = TEMP*CONJG(A(1,J)) | |
|                           DO 160 I = J + 1,MIN(N,J+K) | |
|                               TEMP = TEMP + CONJG(A(L+I,J))*X(I) | |
|   160                     CONTINUE | |
|                       END IF | |
|                       X(J) = TEMP | |
|   170             CONTINUE | |
|               ELSE | |
|                   JX = KX | |
|                   DO 200 J = 1,N | |
|                       TEMP = X(JX) | |
|                       KX = KX + INCX | |
|                       IX = KX | |
|                       L = 1 - J | |
|                       IF (NOCONJ) THEN | |
|                           IF (NOUNIT) TEMP = TEMP*A(1,J) | |
|                           DO 180 I = J + 1,MIN(N,J+K) | |
|                               TEMP = TEMP + A(L+I,J)*X(IX) | |
|                               IX = IX + INCX | |
|   180                     CONTINUE | |
|                       ELSE | |
|                           IF (NOUNIT) TEMP = TEMP*CONJG(A(1,J)) | |
|                           DO 190 I = J + 1,MIN(N,J+K) | |
|                               TEMP = TEMP + CONJG(A(L+I,J))*X(IX) | |
|                               IX = IX + INCX | |
|   190                     CONTINUE | |
|                       END IF | |
|                       X(JX) = TEMP | |
|                       JX = JX + INCX | |
|   200             CONTINUE | |
|               END IF | |
|           END IF | |
|       END IF | |
| * | |
|       RETURN | |
| * | |
| *     End of CTBMV . | |
| * | |
|       END
 |