You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							272 lines
						
					
					
						
							8.1 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							272 lines
						
					
					
						
							8.1 KiB
						
					
					
				|       SUBROUTINE CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) | |
| *     .. Scalar Arguments .. | |
|       COMPLEX ALPHA,BETA | |
|       INTEGER INCX,INCY,N | |
|       CHARACTER UPLO | |
| *     .. | |
| *     .. Array Arguments .. | |
|       COMPLEX AP(*),X(*),Y(*) | |
| *     .. | |
| * | |
| *  Purpose | |
| *  ======= | |
| * | |
| *  CHPMV  performs the matrix-vector operation | |
| * | |
| *     y := alpha*A*x + beta*y, | |
| * | |
| *  where alpha and beta are scalars, x and y are n element vectors and | |
| *  A is an n by n hermitian matrix, supplied in packed form. | |
| * | |
| *  Arguments | |
| *  ========== | |
| * | |
| *  UPLO   - CHARACTER*1. | |
| *           On entry, UPLO specifies whether the upper or lower | |
| *           triangular part of the matrix A is supplied in the packed | |
| *           array AP as follows: | |
| * | |
| *              UPLO = 'U' or 'u'   The upper triangular part of A is | |
| *                                  supplied in AP. | |
| * | |
| *              UPLO = 'L' or 'l'   The lower triangular part of A is | |
| *                                  supplied in AP. | |
| * | |
| *           Unchanged on exit. | |
| * | |
| *  N      - INTEGER. | |
| *           On entry, N specifies the order of the matrix A. | |
| *           N must be at least zero. | |
| *           Unchanged on exit. | |
| * | |
| *  ALPHA  - COMPLEX         . | |
| *           On entry, ALPHA specifies the scalar alpha. | |
| *           Unchanged on exit. | |
| * | |
| *  AP     - COMPLEX          array of DIMENSION at least | |
| *           ( ( n*( n + 1 ) )/2 ). | |
| *           Before entry with UPLO = 'U' or 'u', the array AP must | |
| *           contain the upper triangular part of the hermitian matrix | |
| *           packed sequentially, column by column, so that AP( 1 ) | |
| *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) | |
| *           and a( 2, 2 ) respectively, and so on. | |
| *           Before entry with UPLO = 'L' or 'l', the array AP must | |
| *           contain the lower triangular part of the hermitian matrix | |
| *           packed sequentially, column by column, so that AP( 1 ) | |
| *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) | |
| *           and a( 3, 1 ) respectively, and so on. | |
| *           Note that the imaginary parts of the diagonal elements need | |
| *           not be set and are assumed to be zero. | |
| *           Unchanged on exit. | |
| * | |
| *  X      - COMPLEX          array of dimension at least | |
| *           ( 1 + ( n - 1 )*abs( INCX ) ). | |
| *           Before entry, the incremented array X must contain the n | |
| *           element vector x. | |
| *           Unchanged on exit. | |
| * | |
| *  INCX   - INTEGER. | |
| *           On entry, INCX specifies the increment for the elements of | |
| *           X. INCX must not be zero. | |
| *           Unchanged on exit. | |
| * | |
| *  BETA   - COMPLEX         . | |
| *           On entry, BETA specifies the scalar beta. When BETA is | |
| *           supplied as zero then Y need not be set on input. | |
| *           Unchanged on exit. | |
| * | |
| *  Y      - COMPLEX          array of dimension at least | |
| *           ( 1 + ( n - 1 )*abs( INCY ) ). | |
| *           Before entry, the incremented array Y must contain the n | |
| *           element vector y. On exit, Y is overwritten by the updated | |
| *           vector y. | |
| * | |
| *  INCY   - INTEGER. | |
| *           On entry, INCY specifies the increment for the elements of | |
| *           Y. INCY must not be zero. | |
| *           Unchanged on exit. | |
| * | |
| *  Further Details | |
| *  =============== | |
| * | |
| *  Level 2 Blas routine. | |
| * | |
| *  -- Written on 22-October-1986. | |
| *     Jack Dongarra, Argonne National Lab. | |
| *     Jeremy Du Croz, Nag Central Office. | |
| *     Sven Hammarling, Nag Central Office. | |
| *     Richard Hanson, Sandia National Labs. | |
| * | |
| *  ===================================================================== | |
| * | |
| *     .. Parameters .. | |
|       COMPLEX ONE | |
|       PARAMETER (ONE= (1.0E+0,0.0E+0)) | |
|       COMPLEX ZERO | |
|       PARAMETER (ZERO= (0.0E+0,0.0E+0)) | |
| *     .. | |
| *     .. Local Scalars .. | |
|       COMPLEX TEMP1,TEMP2 | |
|       INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY | |
| *     .. | |
| *     .. External Functions .. | |
|       LOGICAL LSAME | |
|       EXTERNAL LSAME | |
| *     .. | |
| *     .. External Subroutines .. | |
|       EXTERNAL XERBLA | |
| *     .. | |
| *     .. Intrinsic Functions .. | |
|       INTRINSIC CONJG,REAL | |
| *     .. | |
| * | |
| *     Test the input parameters. | |
| * | |
|       INFO = 0 | |
|       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN | |
|           INFO = 1 | |
|       ELSE IF (N.LT.0) THEN | |
|           INFO = 2 | |
|       ELSE IF (INCX.EQ.0) THEN | |
|           INFO = 6 | |
|       ELSE IF (INCY.EQ.0) THEN | |
|           INFO = 9 | |
|       END IF | |
|       IF (INFO.NE.0) THEN | |
|           CALL XERBLA('CHPMV ',INFO) | |
|           RETURN | |
|       END IF | |
| * | |
| *     Quick return if possible. | |
| * | |
|       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN | |
| * | |
| *     Set up the start points in  X  and  Y. | |
| * | |
|       IF (INCX.GT.0) THEN | |
|           KX = 1 | |
|       ELSE | |
|           KX = 1 - (N-1)*INCX | |
|       END IF | |
|       IF (INCY.GT.0) THEN | |
|           KY = 1 | |
|       ELSE | |
|           KY = 1 - (N-1)*INCY | |
|       END IF | |
| * | |
| *     Start the operations. In this version the elements of the array AP | |
| *     are accessed sequentially with one pass through AP. | |
| * | |
| *     First form  y := beta*y. | |
| * | |
|       IF (BETA.NE.ONE) THEN | |
|           IF (INCY.EQ.1) THEN | |
|               IF (BETA.EQ.ZERO) THEN | |
|                   DO 10 I = 1,N | |
|                       Y(I) = ZERO | |
|    10             CONTINUE | |
|               ELSE | |
|                   DO 20 I = 1,N | |
|                       Y(I) = BETA*Y(I) | |
|    20             CONTINUE | |
|               END IF | |
|           ELSE | |
|               IY = KY | |
|               IF (BETA.EQ.ZERO) THEN | |
|                   DO 30 I = 1,N | |
|                       Y(IY) = ZERO | |
|                       IY = IY + INCY | |
|    30             CONTINUE | |
|               ELSE | |
|                   DO 40 I = 1,N | |
|                       Y(IY) = BETA*Y(IY) | |
|                       IY = IY + INCY | |
|    40             CONTINUE | |
|               END IF | |
|           END IF | |
|       END IF | |
|       IF (ALPHA.EQ.ZERO) RETURN | |
|       KK = 1 | |
|       IF (LSAME(UPLO,'U')) THEN | |
| * | |
| *        Form  y  when AP contains the upper triangle. | |
| * | |
|           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN | |
|               DO 60 J = 1,N | |
|                   TEMP1 = ALPHA*X(J) | |
|                   TEMP2 = ZERO | |
|                   K = KK | |
|                   DO 50 I = 1,J - 1 | |
|                       Y(I) = Y(I) + TEMP1*AP(K) | |
|                       TEMP2 = TEMP2 + CONJG(AP(K))*X(I) | |
|                       K = K + 1 | |
|    50             CONTINUE | |
|                   Y(J) = Y(J) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2 | |
|                   KK = KK + J | |
|    60         CONTINUE | |
|           ELSE | |
|               JX = KX | |
|               JY = KY | |
|               DO 80 J = 1,N | |
|                   TEMP1 = ALPHA*X(JX) | |
|                   TEMP2 = ZERO | |
|                   IX = KX | |
|                   IY = KY | |
|                   DO 70 K = KK,KK + J - 2 | |
|                       Y(IY) = Y(IY) + TEMP1*AP(K) | |
|                       TEMP2 = TEMP2 + CONJG(AP(K))*X(IX) | |
|                       IX = IX + INCX | |
|                       IY = IY + INCY | |
|    70             CONTINUE | |
|                   Y(JY) = Y(JY) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2 | |
|                   JX = JX + INCX | |
|                   JY = JY + INCY | |
|                   KK = KK + J | |
|    80         CONTINUE | |
|           END IF | |
|       ELSE | |
| * | |
| *        Form  y  when AP contains the lower triangle. | |
| * | |
|           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN | |
|               DO 100 J = 1,N | |
|                   TEMP1 = ALPHA*X(J) | |
|                   TEMP2 = ZERO | |
|                   Y(J) = Y(J) + TEMP1*REAL(AP(KK)) | |
|                   K = KK + 1 | |
|                   DO 90 I = J + 1,N | |
|                       Y(I) = Y(I) + TEMP1*AP(K) | |
|                       TEMP2 = TEMP2 + CONJG(AP(K))*X(I) | |
|                       K = K + 1 | |
|    90             CONTINUE | |
|                   Y(J) = Y(J) + ALPHA*TEMP2 | |
|                   KK = KK + (N-J+1) | |
|   100         CONTINUE | |
|           ELSE | |
|               JX = KX | |
|               JY = KY | |
|               DO 120 J = 1,N | |
|                   TEMP1 = ALPHA*X(JX) | |
|                   TEMP2 = ZERO | |
|                   Y(JY) = Y(JY) + TEMP1*REAL(AP(KK)) | |
|                   IX = JX | |
|                   IY = JY | |
|                   DO 110 K = KK + 1,KK + N - J | |
|                       IX = IX + INCX | |
|                       IY = IY + INCY | |
|                       Y(IY) = Y(IY) + TEMP1*AP(K) | |
|                       TEMP2 = TEMP2 + CONJG(AP(K))*X(IX) | |
|   110             CONTINUE | |
|                   Y(JY) = Y(JY) + ALPHA*TEMP2 | |
|                   JX = JX + INCX | |
|                   JY = JY + INCY | |
|                   KK = KK + (N-J+1) | |
|   120         CONTINUE | |
|           END IF | |
|       END IF | |
| * | |
|       RETURN | |
| * | |
| *     End of CHPMV . | |
| * | |
|       END
 |