You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3622 lines
124 KiB
3622 lines
124 KiB
/* ========================================================================== */
|
|
/* === colamd/symamd - a sparse matrix column ordering algorithm ============ */
|
|
/* ========================================================================== */
|
|
|
|
/* COLAMD / SYMAMD
|
|
|
|
colamd: an approximate minimum degree column ordering algorithm,
|
|
for LU factorization of symmetric or unsymmetric matrices,
|
|
QR factorization, least squares, interior point methods for
|
|
linear programming problems, and other related problems.
|
|
|
|
symamd: an approximate minimum degree ordering algorithm for Cholesky
|
|
factorization of symmetric matrices.
|
|
|
|
Purpose:
|
|
|
|
Colamd computes a permutation Q such that the Cholesky factorization of
|
|
(AQ)'(AQ) has less fill-in and requires fewer floating point operations
|
|
than A'A. This also provides a good ordering for sparse partial
|
|
pivoting methods, P(AQ) = LU, where Q is computed prior to numerical
|
|
factorization, and P is computed during numerical factorization via
|
|
conventional partial pivoting with row interchanges. Colamd is the
|
|
column ordering method used in SuperLU, part of the ScaLAPACK library.
|
|
It is also available as built-in function in MATLAB Version 6,
|
|
available from MathWorks, Inc. (http://www.mathworks.com). This
|
|
routine can be used in place of colmmd in MATLAB.
|
|
|
|
Symamd computes a permutation P of a symmetric matrix A such that the
|
|
Cholesky factorization of PAP' has less fill-in and requires fewer
|
|
floating point operations than A. Symamd constructs a matrix M such
|
|
that M'M has the same nonzero pattern of A, and then orders the columns
|
|
of M using colmmd. The column ordering of M is then returned as the
|
|
row and column ordering P of A.
|
|
|
|
Authors:
|
|
|
|
The authors of the code itself are Stefan I. Larimore and Timothy A.
|
|
Davis (davis at cise.ufl.edu), University of Florida. The algorithm was
|
|
developed in collaboration with John Gilbert, Xerox PARC, and Esmond
|
|
Ng, Oak Ridge National Laboratory.
|
|
|
|
Acknowledgements:
|
|
|
|
This work was supported by the National Science Foundation, under
|
|
grants DMS-9504974 and DMS-9803599.
|
|
|
|
Copyright and License:
|
|
|
|
Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved.
|
|
COLAMD is also available under alternate licenses, contact T. Davis
|
|
for details.
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
|
USA
|
|
|
|
Permission is hereby granted to use or copy this program under the
|
|
terms of the GNU LGPL, provided that the Copyright, this License,
|
|
and the Availability of the original version is retained on all copies.
|
|
User documentation of any code that uses this code or any modified
|
|
version of this code must cite the Copyright, this License, the
|
|
Availability note, and "Used by permission." Permission to modify
|
|
the code and to distribute modified code is granted, provided the
|
|
Copyright, this License, and the Availability note are retained,
|
|
and a notice that the code was modified is included.
|
|
|
|
Availability:
|
|
|
|
The colamd/symamd library is available at
|
|
|
|
http://www.cise.ufl.edu/research/sparse/colamd/
|
|
|
|
This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.c
|
|
file. It requires the colamd.h file. It is required by the colamdmex.c
|
|
and symamdmex.c files, for the MATLAB interface to colamd and symamd.
|
|
Appears as ACM Algorithm 836.
|
|
|
|
See the ChangeLog file for changes since Version 1.0.
|
|
|
|
References:
|
|
|
|
T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, An approximate column
|
|
minimum degree ordering algorithm, ACM Transactions on Mathematical
|
|
Software, vol. 30, no. 3., pp. 353-376, 2004.
|
|
|
|
T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: COLAMD,
|
|
an approximate column minimum degree ordering algorithm, ACM
|
|
Transactions on Mathematical Software, vol. 30, no. 3., pp. 377-380,
|
|
2004.
|
|
|
|
*/
|
|
|
|
/* ========================================================================== */
|
|
/* === Description of user-callable routines ================================ */
|
|
/* ========================================================================== */
|
|
|
|
/* COLAMD includes both int and UF_long versions of all its routines. The
|
|
* description below is for the int version. For UF_long, all int arguments
|
|
* become UF_long. UF_long is normally defined as long, except for WIN64.
|
|
|
|
----------------------------------------------------------------------------
|
|
colamd_recommended:
|
|
----------------------------------------------------------------------------
|
|
|
|
C syntax:
|
|
|
|
#include "colamd.h"
|
|
size_t colamd_recommended (int nnz, int n_row, int n_col) ;
|
|
size_t colamd_l_recommended (UF_long nnz, UF_long n_row,
|
|
UF_long n_col) ;
|
|
|
|
Purpose:
|
|
|
|
Returns recommended value of Alen for use by colamd. Returns 0
|
|
if any input argument is negative. The use of this routine
|
|
is optional. Not needed for symamd, which dynamically allocates
|
|
its own memory.
|
|
|
|
Note that in v2.4 and earlier, these routines returned int or long.
|
|
They now return a value of type size_t.
|
|
|
|
Arguments (all input arguments):
|
|
|
|
int nnz ; Number of nonzeros in the matrix A. This must
|
|
be the same value as p [n_col] in the call to
|
|
colamd - otherwise you will get a wrong value
|
|
of the recommended memory to use.
|
|
|
|
int n_row ; Number of rows in the matrix A.
|
|
|
|
int n_col ; Number of columns in the matrix A.
|
|
|
|
----------------------------------------------------------------------------
|
|
colamd_set_defaults:
|
|
----------------------------------------------------------------------------
|
|
|
|
C syntax:
|
|
|
|
#include "colamd.h"
|
|
colamd_set_defaults (double knobs [COLAMD_KNOBS]) ;
|
|
colamd_l_set_defaults (double knobs [COLAMD_KNOBS]) ;
|
|
|
|
Purpose:
|
|
|
|
Sets the default parameters. The use of this routine is optional.
|
|
|
|
Arguments:
|
|
|
|
double knobs [COLAMD_KNOBS] ; Output only.
|
|
|
|
NOTE: the meaning of the dense row/col knobs has changed in v2.4
|
|
|
|
knobs [0] and knobs [1] control dense row and col detection:
|
|
|
|
Colamd: rows with more than
|
|
max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n_col))
|
|
entries are removed prior to ordering. Columns with more than
|
|
max (16, knobs [COLAMD_DENSE_COL] * sqrt (MIN (n_row,n_col)))
|
|
entries are removed prior to
|
|
ordering, and placed last in the output column ordering.
|
|
|
|
Symamd: uses only knobs [COLAMD_DENSE_ROW], which is knobs [0].
|
|
Rows and columns with more than
|
|
max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n))
|
|
entries are removed prior to ordering, and placed last in the
|
|
output ordering.
|
|
|
|
COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1,
|
|
respectively, in colamd.h. Default values of these two knobs
|
|
are both 10. Currently, only knobs [0] and knobs [1] are
|
|
used, but future versions may use more knobs. If so, they will
|
|
be properly set to their defaults by the future version of
|
|
colamd_set_defaults, so that the code that calls colamd will
|
|
not need to change, assuming that you either use
|
|
colamd_set_defaults, or pass a (double *) NULL pointer as the
|
|
knobs array to colamd or symamd.
|
|
|
|
knobs [2]: aggressive absorption
|
|
|
|
knobs [COLAMD_AGGRESSIVE] controls whether or not to do
|
|
aggressive absorption during the ordering. Default is TRUE.
|
|
|
|
|
|
----------------------------------------------------------------------------
|
|
colamd:
|
|
----------------------------------------------------------------------------
|
|
|
|
C syntax:
|
|
|
|
#include "colamd.h"
|
|
int colamd (int n_row, int n_col, int Alen, int *A, int *p,
|
|
double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS]) ;
|
|
UF_long colamd_l (UF_long n_row, UF_long n_col, UF_long Alen,
|
|
UF_long *A, UF_long *p, double knobs [COLAMD_KNOBS],
|
|
UF_long stats [COLAMD_STATS]) ;
|
|
|
|
Purpose:
|
|
|
|
Computes a column ordering (Q) of A such that P(AQ)=LU or
|
|
(AQ)'AQ=LL' have less fill-in and require fewer floating point
|
|
operations than factorizing the unpermuted matrix A or A'A,
|
|
respectively.
|
|
|
|
Returns:
|
|
|
|
TRUE (1) if successful, FALSE (0) otherwise.
|
|
|
|
Arguments:
|
|
|
|
int n_row ; Input argument.
|
|
|
|
Number of rows in the matrix A.
|
|
Restriction: n_row >= 0.
|
|
Colamd returns FALSE if n_row is negative.
|
|
|
|
int n_col ; Input argument.
|
|
|
|
Number of columns in the matrix A.
|
|
Restriction: n_col >= 0.
|
|
Colamd returns FALSE if n_col is negative.
|
|
|
|
int Alen ; Input argument.
|
|
|
|
Restriction (see note):
|
|
Alen >= 2*nnz + 6*(n_col+1) + 4*(n_row+1) + n_col
|
|
Colamd returns FALSE if these conditions are not met.
|
|
|
|
Note: this restriction makes an modest assumption regarding
|
|
the size of the two typedef's structures in colamd.h.
|
|
We do, however, guarantee that
|
|
|
|
Alen >= colamd_recommended (nnz, n_row, n_col)
|
|
|
|
will be sufficient. Note: the macro version does not check
|
|
for integer overflow, and thus is not recommended. Use
|
|
the colamd_recommended routine instead.
|
|
|
|
int A [Alen] ; Input argument, undefined on output.
|
|
|
|
A is an integer array of size Alen. Alen must be at least as
|
|
large as the bare minimum value given above, but this is very
|
|
low, and can result in excessive run time. For best
|
|
performance, we recommend that Alen be greater than or equal to
|
|
colamd_recommended (nnz, n_row, n_col), which adds
|
|
nnz/5 to the bare minimum value given above.
|
|
|
|
On input, the row indices of the entries in column c of the
|
|
matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices
|
|
in a given column c need not be in ascending order, and
|
|
duplicate row indices may be be present. However, colamd will
|
|
work a little faster if both of these conditions are met
|
|
(Colamd puts the matrix into this format, if it finds that the
|
|
the conditions are not met).
|
|
|
|
The matrix is 0-based. That is, rows are in the range 0 to
|
|
n_row-1, and columns are in the range 0 to n_col-1. Colamd
|
|
returns FALSE if any row index is out of range.
|
|
|
|
The contents of A are modified during ordering, and are
|
|
undefined on output.
|
|
|
|
int p [n_col+1] ; Both input and output argument.
|
|
|
|
p is an integer array of size n_col+1. On input, it holds the
|
|
"pointers" for the column form of the matrix A. Column c of
|
|
the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
|
|
entry, p [0], must be zero, and p [c] <= p [c+1] must hold
|
|
for all c in the range 0 to n_col-1. The value p [n_col] is
|
|
thus the total number of entries in the pattern of the matrix A.
|
|
Colamd returns FALSE if these conditions are not met.
|
|
|
|
On output, if colamd returns TRUE, the array p holds the column
|
|
permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is
|
|
the first column index in the new ordering, and p [n_col-1] is
|
|
the last. That is, p [k] = j means that column j of A is the
|
|
kth pivot column, in AQ, where k is in the range 0 to n_col-1
|
|
(p [0] = j means that column j of A is the first column in AQ).
|
|
|
|
If colamd returns FALSE, then no permutation is returned, and
|
|
p is undefined on output.
|
|
|
|
double knobs [COLAMD_KNOBS] ; Input argument.
|
|
|
|
See colamd_set_defaults for a description.
|
|
|
|
int stats [COLAMD_STATS] ; Output argument.
|
|
|
|
Statistics on the ordering, and error status.
|
|
See colamd.h for related definitions.
|
|
Colamd returns FALSE if stats is not present.
|
|
|
|
stats [0]: number of dense or empty rows ignored.
|
|
|
|
stats [1]: number of dense or empty columns ignored (and
|
|
ordered last in the output permutation p)
|
|
Note that a row can become "empty" if it
|
|
contains only "dense" and/or "empty" columns,
|
|
and similarly a column can become "empty" if it
|
|
only contains "dense" and/or "empty" rows.
|
|
|
|
stats [2]: number of garbage collections performed.
|
|
This can be excessively high if Alen is close
|
|
to the minimum required value.
|
|
|
|
stats [3]: status code. < 0 is an error code.
|
|
> 1 is a warning or notice.
|
|
|
|
0 OK. Each column of the input matrix contained
|
|
row indices in increasing order, with no
|
|
duplicates.
|
|
|
|
1 OK, but columns of input matrix were jumbled
|
|
(unsorted columns or duplicate entries). Colamd
|
|
had to do some extra work to sort the matrix
|
|
first and remove duplicate entries, but it
|
|
still was able to return a valid permutation
|
|
(return value of colamd was TRUE).
|
|
|
|
stats [4]: highest numbered column that
|
|
is unsorted or has duplicate
|
|
entries.
|
|
stats [5]: last seen duplicate or
|
|
unsorted row index.
|
|
stats [6]: number of duplicate or
|
|
unsorted row indices.
|
|
|
|
-1 A is a null pointer
|
|
|
|
-2 p is a null pointer
|
|
|
|
-3 n_row is negative
|
|
|
|
stats [4]: n_row
|
|
|
|
-4 n_col is negative
|
|
|
|
stats [4]: n_col
|
|
|
|
-5 number of nonzeros in matrix is negative
|
|
|
|
stats [4]: number of nonzeros, p [n_col]
|
|
|
|
-6 p [0] is nonzero
|
|
|
|
stats [4]: p [0]
|
|
|
|
-7 A is too small
|
|
|
|
stats [4]: required size
|
|
stats [5]: actual size (Alen)
|
|
|
|
-8 a column has a negative number of entries
|
|
|
|
stats [4]: column with < 0 entries
|
|
stats [5]: number of entries in col
|
|
|
|
-9 a row index is out of bounds
|
|
|
|
stats [4]: column with bad row index
|
|
stats [5]: bad row index
|
|
stats [6]: n_row, # of rows of matrx
|
|
|
|
-10 (unused; see symamd.c)
|
|
|
|
-999 (unused; see symamd.c)
|
|
|
|
Future versions may return more statistics in the stats array.
|
|
|
|
Example:
|
|
|
|
See http://www.cise.ufl.edu/research/sparse/colamd/example.c
|
|
for a complete example.
|
|
|
|
To order the columns of a 5-by-4 matrix with 11 nonzero entries in
|
|
the following nonzero pattern
|
|
|
|
x 0 x 0
|
|
x 0 x x
|
|
0 x x 0
|
|
0 0 x x
|
|
x x 0 0
|
|
|
|
with default knobs and no output statistics, do the following:
|
|
|
|
#include "colamd.h"
|
|
#define ALEN 100
|
|
int A [ALEN] = {0, 1, 4, 2, 4, 0, 1, 2, 3, 1, 3} ;
|
|
int p [ ] = {0, 3, 5, 9, 11} ;
|
|
int stats [COLAMD_STATS] ;
|
|
colamd (5, 4, ALEN, A, p, (double *) NULL, stats) ;
|
|
|
|
The permutation is returned in the array p, and A is destroyed.
|
|
|
|
----------------------------------------------------------------------------
|
|
symamd:
|
|
----------------------------------------------------------------------------
|
|
|
|
C syntax:
|
|
|
|
#include "colamd.h"
|
|
int symamd (int n, int *A, int *p, int *perm,
|
|
double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS],
|
|
void (*allocate) (size_t, size_t), void (*release) (void *)) ;
|
|
UF_long symamd_l (UF_long n, UF_long *A, UF_long *p, UF_long *perm,
|
|
double knobs [COLAMD_KNOBS], UF_long stats [COLAMD_STATS],
|
|
void (*allocate) (size_t, size_t), void (*release) (void *)) ;
|
|
|
|
Purpose:
|
|
|
|
The symamd routine computes an ordering P of a symmetric sparse
|
|
matrix A such that the Cholesky factorization PAP' = LL' remains
|
|
sparse. It is based on a column ordering of a matrix M constructed
|
|
so that the nonzero pattern of M'M is the same as A. The matrix A
|
|
is assumed to be symmetric; only the strictly lower triangular part
|
|
is accessed. You must pass your selected memory allocator (usually
|
|
calloc/free or mxCalloc/mxFree) to symamd, for it to allocate
|
|
memory for the temporary matrix M.
|
|
|
|
Returns:
|
|
|
|
TRUE (1) if successful, FALSE (0) otherwise.
|
|
|
|
Arguments:
|
|
|
|
int n ; Input argument.
|
|
|
|
Number of rows and columns in the symmetrix matrix A.
|
|
Restriction: n >= 0.
|
|
Symamd returns FALSE if n is negative.
|
|
|
|
int A [nnz] ; Input argument.
|
|
|
|
A is an integer array of size nnz, where nnz = p [n].
|
|
|
|
The row indices of the entries in column c of the matrix are
|
|
held in A [(p [c]) ... (p [c+1]-1)]. The row indices in a
|
|
given column c need not be in ascending order, and duplicate
|
|
row indices may be present. However, symamd will run faster
|
|
if the columns are in sorted order with no duplicate entries.
|
|
|
|
The matrix is 0-based. That is, rows are in the range 0 to
|
|
n-1, and columns are in the range 0 to n-1. Symamd
|
|
returns FALSE if any row index is out of range.
|
|
|
|
The contents of A are not modified.
|
|
|
|
int p [n+1] ; Input argument.
|
|
|
|
p is an integer array of size n+1. On input, it holds the
|
|
"pointers" for the column form of the matrix A. Column c of
|
|
the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
|
|
entry, p [0], must be zero, and p [c] <= p [c+1] must hold
|
|
for all c in the range 0 to n-1. The value p [n] is
|
|
thus the total number of entries in the pattern of the matrix A.
|
|
Symamd returns FALSE if these conditions are not met.
|
|
|
|
The contents of p are not modified.
|
|
|
|
int perm [n+1] ; Output argument.
|
|
|
|
On output, if symamd returns TRUE, the array perm holds the
|
|
permutation P, where perm [0] is the first index in the new
|
|
ordering, and perm [n-1] is the last. That is, perm [k] = j
|
|
means that row and column j of A is the kth column in PAP',
|
|
where k is in the range 0 to n-1 (perm [0] = j means
|
|
that row and column j of A are the first row and column in
|
|
PAP'). The array is used as a workspace during the ordering,
|
|
which is why it must be of length n+1, not just n.
|
|
|
|
double knobs [COLAMD_KNOBS] ; Input argument.
|
|
|
|
See colamd_set_defaults for a description.
|
|
|
|
int stats [COLAMD_STATS] ; Output argument.
|
|
|
|
Statistics on the ordering, and error status.
|
|
See colamd.h for related definitions.
|
|
Symamd returns FALSE if stats is not present.
|
|
|
|
stats [0]: number of dense or empty row and columns ignored
|
|
(and ordered last in the output permutation
|
|
perm). Note that a row/column can become
|
|
"empty" if it contains only "dense" and/or
|
|
"empty" columns/rows.
|
|
|
|
stats [1]: (same as stats [0])
|
|
|
|
stats [2]: number of garbage collections performed.
|
|
|
|
stats [3]: status code. < 0 is an error code.
|
|
> 1 is a warning or notice.
|
|
|
|
0 OK. Each column of the input matrix contained
|
|
row indices in increasing order, with no
|
|
duplicates.
|
|
|
|
1 OK, but columns of input matrix were jumbled
|
|
(unsorted columns or duplicate entries). Symamd
|
|
had to do some extra work to sort the matrix
|
|
first and remove duplicate entries, but it
|
|
still was able to return a valid permutation
|
|
(return value of symamd was TRUE).
|
|
|
|
stats [4]: highest numbered column that
|
|
is unsorted or has duplicate
|
|
entries.
|
|
stats [5]: last seen duplicate or
|
|
unsorted row index.
|
|
stats [6]: number of duplicate or
|
|
unsorted row indices.
|
|
|
|
-1 A is a null pointer
|
|
|
|
-2 p is a null pointer
|
|
|
|
-3 (unused, see colamd.c)
|
|
|
|
-4 n is negative
|
|
|
|
stats [4]: n
|
|
|
|
-5 number of nonzeros in matrix is negative
|
|
|
|
stats [4]: # of nonzeros (p [n]).
|
|
|
|
-6 p [0] is nonzero
|
|
|
|
stats [4]: p [0]
|
|
|
|
-7 (unused)
|
|
|
|
-8 a column has a negative number of entries
|
|
|
|
stats [4]: column with < 0 entries
|
|
stats [5]: number of entries in col
|
|
|
|
-9 a row index is out of bounds
|
|
|
|
stats [4]: column with bad row index
|
|
stats [5]: bad row index
|
|
stats [6]: n_row, # of rows of matrx
|
|
|
|
-10 out of memory (unable to allocate temporary
|
|
workspace for M or count arrays using the
|
|
"allocate" routine passed into symamd).
|
|
|
|
Future versions may return more statistics in the stats array.
|
|
|
|
void * (*allocate) (size_t, size_t)
|
|
|
|
A pointer to a function providing memory allocation. The
|
|
allocated memory must be returned initialized to zero. For a
|
|
C application, this argument should normally be a pointer to
|
|
calloc. For a MATLAB mexFunction, the routine mxCalloc is
|
|
passed instead.
|
|
|
|
void (*release) (size_t, size_t)
|
|
|
|
A pointer to a function that frees memory allocated by the
|
|
memory allocation routine above. For a C application, this
|
|
argument should normally be a pointer to free. For a MATLAB
|
|
mexFunction, the routine mxFree is passed instead.
|
|
|
|
|
|
----------------------------------------------------------------------------
|
|
colamd_report:
|
|
----------------------------------------------------------------------------
|
|
|
|
C syntax:
|
|
|
|
#include "colamd.h"
|
|
colamd_report (int stats [COLAMD_STATS]) ;
|
|
colamd_l_report (UF_long stats [COLAMD_STATS]) ;
|
|
|
|
Purpose:
|
|
|
|
Prints the error status and statistics recorded in the stats
|
|
array on the standard error output (for a standard C routine)
|
|
or on the MATLAB output (for a mexFunction).
|
|
|
|
Arguments:
|
|
|
|
int stats [COLAMD_STATS] ; Input only. Statistics from colamd.
|
|
|
|
|
|
----------------------------------------------------------------------------
|
|
symamd_report:
|
|
----------------------------------------------------------------------------
|
|
|
|
C syntax:
|
|
|
|
#include "colamd.h"
|
|
symamd_report (int stats [COLAMD_STATS]) ;
|
|
symamd_l_report (UF_long stats [COLAMD_STATS]) ;
|
|
|
|
Purpose:
|
|
|
|
Prints the error status and statistics recorded in the stats
|
|
array on the standard error output (for a standard C routine)
|
|
or on the MATLAB output (for a mexFunction).
|
|
|
|
Arguments:
|
|
|
|
int stats [COLAMD_STATS] ; Input only. Statistics from symamd.
|
|
|
|
|
|
*/
|
|
|
|
/* ========================================================================== */
|
|
/* === Scaffolding code definitions ======================================== */
|
|
/* ========================================================================== */
|
|
|
|
/* Ensure that debugging is turned off: */
|
|
#ifndef NDEBUG
|
|
#define NDEBUG
|
|
#endif
|
|
|
|
/* turn on debugging by uncommenting the following line
|
|
#undef NDEBUG
|
|
*/
|
|
|
|
/*
|
|
Our "scaffolding code" philosophy: In our opinion, well-written library
|
|
code should keep its "debugging" code, and just normally have it turned off
|
|
by the compiler so as not to interfere with performance. This serves
|
|
several purposes:
|
|
|
|
(1) assertions act as comments to the reader, telling you what the code
|
|
expects at that point. All assertions will always be true (unless
|
|
there really is a bug, of course).
|
|
|
|
(2) leaving in the scaffolding code assists anyone who would like to modify
|
|
the code, or understand the algorithm (by reading the debugging output,
|
|
one can get a glimpse into what the code is doing).
|
|
|
|
(3) (gasp!) for actually finding bugs. This code has been heavily tested
|
|
and "should" be fully functional and bug-free ... but you never know...
|
|
|
|
The code will become outrageously slow when debugging is
|
|
enabled. To control the level of debugging output, set an environment
|
|
variable D to 0 (little), 1 (some), 2, 3, or 4 (lots). When debugging,
|
|
you should see the following message on the standard output:
|
|
|
|
colamd: debug version, D = 1 (THIS WILL BE SLOW!)
|
|
|
|
or a similar message for symamd. If you don't, then debugging has not
|
|
been enabled.
|
|
|
|
*/
|
|
|
|
/* ========================================================================== */
|
|
/* === Include files ======================================================== */
|
|
/* ========================================================================== */
|
|
|
|
#include "colamd.h"
|
|
|
|
#if 0 /* by mao */
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
|
|
#ifdef MATLAB_MEX_FILE
|
|
#include "mex.h"
|
|
#include "matrix.h"
|
|
#endif /* MATLAB_MEX_FILE */
|
|
|
|
#if !defined (NPRINT) || !defined (NDEBUG)
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
#ifndef NULL
|
|
#define NULL ((void *) 0)
|
|
#endif
|
|
#endif
|
|
|
|
/* ========================================================================== */
|
|
/* === int or UF_long ======================================================= */
|
|
/* ========================================================================== */
|
|
|
|
#if 0 /* by mao */
|
|
/* define UF_long */
|
|
#include "UFconfig.h"
|
|
#endif
|
|
|
|
#ifdef DLONG
|
|
|
|
#define Int UF_long
|
|
#define ID UF_long_id
|
|
#define Int_MAX UF_long_max
|
|
|
|
#define COLAMD_recommended colamd_l_recommended
|
|
#define COLAMD_set_defaults colamd_l_set_defaults
|
|
#define COLAMD_MAIN colamd_l
|
|
#define SYMAMD_MAIN symamd_l
|
|
#define COLAMD_report colamd_l_report
|
|
#define SYMAMD_report symamd_l_report
|
|
|
|
#else
|
|
|
|
#define Int int
|
|
#define ID "%d"
|
|
#define Int_MAX INT_MAX
|
|
|
|
#define COLAMD_recommended colamd_recommended
|
|
#define COLAMD_set_defaults colamd_set_defaults
|
|
#define COLAMD_MAIN colamd
|
|
#define SYMAMD_MAIN symamd
|
|
#define COLAMD_report colamd_report
|
|
#define SYMAMD_report symamd_report
|
|
|
|
#endif
|
|
|
|
/* ========================================================================== */
|
|
/* === Row and Column structures ============================================ */
|
|
/* ========================================================================== */
|
|
|
|
/* User code that makes use of the colamd/symamd routines need not directly */
|
|
/* reference these structures. They are used only for colamd_recommended. */
|
|
|
|
typedef struct Colamd_Col_struct
|
|
{
|
|
Int start ; /* index for A of first row in this column, or DEAD */
|
|
/* if column is dead */
|
|
Int length ; /* number of rows in this column */
|
|
union
|
|
{
|
|
Int thickness ; /* number of original columns represented by this */
|
|
/* col, if the column is alive */
|
|
Int parent ; /* parent in parent tree super-column structure, if */
|
|
/* the column is dead */
|
|
} shared1 ;
|
|
union
|
|
{
|
|
Int score ; /* the score used to maintain heap, if col is alive */
|
|
Int order ; /* pivot ordering of this column, if col is dead */
|
|
} shared2 ;
|
|
union
|
|
{
|
|
Int headhash ; /* head of a hash bucket, if col is at the head of */
|
|
/* a degree list */
|
|
Int hash ; /* hash value, if col is not in a degree list */
|
|
Int prev ; /* previous column in degree list, if col is in a */
|
|
/* degree list (but not at the head of a degree list) */
|
|
} shared3 ;
|
|
union
|
|
{
|
|
Int degree_next ; /* next column, if col is in a degree list */
|
|
Int hash_next ; /* next column, if col is in a hash list */
|
|
} shared4 ;
|
|
|
|
} Colamd_Col ;
|
|
|
|
typedef struct Colamd_Row_struct
|
|
{
|
|
Int start ; /* index for A of first col in this row */
|
|
Int length ; /* number of principal columns in this row */
|
|
union
|
|
{
|
|
Int degree ; /* number of principal & non-principal columns in row */
|
|
Int p ; /* used as a row pointer in init_rows_cols () */
|
|
} shared1 ;
|
|
union
|
|
{
|
|
Int mark ; /* for computing set differences and marking dead rows*/
|
|
Int first_column ;/* first column in row (used in garbage collection) */
|
|
} shared2 ;
|
|
|
|
} Colamd_Row ;
|
|
|
|
/* ========================================================================== */
|
|
/* === Definitions ========================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/* Routines are either PUBLIC (user-callable) or PRIVATE (not user-callable) */
|
|
#define PUBLIC
|
|
#define PRIVATE static
|
|
|
|
#define DENSE_DEGREE(alpha,n) \
|
|
((Int) MAX (16.0, (alpha) * sqrt ((double) (n))))
|
|
|
|
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
|
|
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
|
|
|
|
#define ONES_COMPLEMENT(r) (-(r)-1)
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
/* Change for version 2.1: define TRUE and FALSE only if not yet defined */
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
#ifndef TRUE
|
|
#define TRUE (1)
|
|
#endif
|
|
|
|
#ifndef FALSE
|
|
#define FALSE (0)
|
|
#endif
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
#define EMPTY (-1)
|
|
|
|
/* Row and column status */
|
|
#define ALIVE (0)
|
|
#define DEAD (-1)
|
|
|
|
/* Column status */
|
|
#define DEAD_PRINCIPAL (-1)
|
|
#define DEAD_NON_PRINCIPAL (-2)
|
|
|
|
/* Macros for row and column status update and checking. */
|
|
#define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
|
|
#define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE)
|
|
#define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE)
|
|
#define COL_IS_DEAD(c) (Col [c].start < ALIVE)
|
|
#define COL_IS_ALIVE(c) (Col [c].start >= ALIVE)
|
|
#define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL)
|
|
#define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; }
|
|
#define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; }
|
|
#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }
|
|
|
|
/* ========================================================================== */
|
|
/* === Colamd reporting mechanism =========================================== */
|
|
/* ========================================================================== */
|
|
|
|
#if defined (MATLAB_MEX_FILE) || defined (MATHWORKS)
|
|
/* In MATLAB, matrices are 1-based to the user, but 0-based internally */
|
|
#define INDEX(i) ((i)+1)
|
|
#else
|
|
/* In C, matrices are 0-based and indices are reported as such in *_report */
|
|
#define INDEX(i) (i)
|
|
#endif
|
|
|
|
/* All output goes through the PRINTF macro. */
|
|
#define PRINTF(params) { if (colamd_printf != NULL) (void) colamd_printf params ; }
|
|
|
|
/* ========================================================================== */
|
|
/* === Prototypes of PRIVATE routines ======================================= */
|
|
/* ========================================================================== */
|
|
|
|
PRIVATE Int init_rows_cols
|
|
(
|
|
Int n_row,
|
|
Int n_col,
|
|
Colamd_Row Row [],
|
|
Colamd_Col Col [],
|
|
Int A [],
|
|
Int p [],
|
|
Int stats [COLAMD_STATS]
|
|
) ;
|
|
|
|
PRIVATE void init_scoring
|
|
(
|
|
Int n_row,
|
|
Int n_col,
|
|
Colamd_Row Row [],
|
|
Colamd_Col Col [],
|
|
Int A [],
|
|
Int head [],
|
|
double knobs [COLAMD_KNOBS],
|
|
Int *p_n_row2,
|
|
Int *p_n_col2,
|
|
Int *p_max_deg
|
|
) ;
|
|
|
|
PRIVATE Int find_ordering
|
|
(
|
|
Int n_row,
|
|
Int n_col,
|
|
Int Alen,
|
|
Colamd_Row Row [],
|
|
Colamd_Col Col [],
|
|
Int A [],
|
|
Int head [],
|
|
Int n_col2,
|
|
Int max_deg,
|
|
Int pfree,
|
|
Int aggressive
|
|
) ;
|
|
|
|
PRIVATE void order_children
|
|
(
|
|
Int n_col,
|
|
Colamd_Col Col [],
|
|
Int p []
|
|
) ;
|
|
|
|
PRIVATE void detect_super_cols
|
|
(
|
|
|
|
#ifndef NDEBUG
|
|
Int n_col,
|
|
Colamd_Row Row [],
|
|
#endif /* NDEBUG */
|
|
|
|
Colamd_Col Col [],
|
|
Int A [],
|
|
Int head [],
|
|
Int row_start,
|
|
Int row_length
|
|
) ;
|
|
|
|
PRIVATE Int garbage_collection
|
|
(
|
|
Int n_row,
|
|
Int n_col,
|
|
Colamd_Row Row [],
|
|
Colamd_Col Col [],
|
|
Int A [],
|
|
Int *pfree
|
|
) ;
|
|
|
|
PRIVATE Int clear_mark
|
|
(
|
|
Int tag_mark,
|
|
Int max_mark,
|
|
Int n_row,
|
|
Colamd_Row Row []
|
|
) ;
|
|
|
|
PRIVATE void print_report
|
|
(
|
|
char *method,
|
|
Int stats [COLAMD_STATS]
|
|
) ;
|
|
|
|
/* ========================================================================== */
|
|
/* === Debugging prototypes and definitions ================================= */
|
|
/* ========================================================================== */
|
|
|
|
#ifndef NDEBUG
|
|
|
|
#if 0 /* by mao */
|
|
#include <assert.h>
|
|
#endif
|
|
|
|
/* colamd_debug is the *ONLY* global variable, and is only */
|
|
/* present when debugging */
|
|
|
|
PRIVATE Int colamd_debug = 0 ; /* debug print level */
|
|
|
|
#define DEBUG0(params) { PRINTF (params) ; }
|
|
#define DEBUG1(params) { if (colamd_debug >= 1) PRINTF (params) ; }
|
|
#define DEBUG2(params) { if (colamd_debug >= 2) PRINTF (params) ; }
|
|
#define DEBUG3(params) { if (colamd_debug >= 3) PRINTF (params) ; }
|
|
#define DEBUG4(params) { if (colamd_debug >= 4) PRINTF (params) ; }
|
|
|
|
#if 0 /* by mao */
|
|
#ifdef MATLAB_MEX_FILE
|
|
#define ASSERT(expression) (mxAssert ((expression), ""))
|
|
#else
|
|
#define ASSERT(expression) (assert (expression))
|
|
#endif /* MATLAB_MEX_FILE */
|
|
#else
|
|
#define ASSERT xassert
|
|
#endif
|
|
|
|
PRIVATE void colamd_get_debug /* gets the debug print level from getenv */
|
|
(
|
|
char *method
|
|
) ;
|
|
|
|
PRIVATE void debug_deg_lists
|
|
(
|
|
Int n_row,
|
|
Int n_col,
|
|
Colamd_Row Row [],
|
|
Colamd_Col Col [],
|
|
Int head [],
|
|
Int min_score,
|
|
Int should,
|
|
Int max_deg
|
|
) ;
|
|
|
|
PRIVATE void debug_mark
|
|
(
|
|
Int n_row,
|
|
Colamd_Row Row [],
|
|
Int tag_mark,
|
|
Int max_mark
|
|
) ;
|
|
|
|
PRIVATE void debug_matrix
|
|
(
|
|
Int n_row,
|
|
Int n_col,
|
|
Colamd_Row Row [],
|
|
Colamd_Col Col [],
|
|
Int A []
|
|
) ;
|
|
|
|
PRIVATE void debug_structures
|
|
(
|
|
Int n_row,
|
|
Int n_col,
|
|
Colamd_Row Row [],
|
|
Colamd_Col Col [],
|
|
Int A [],
|
|
Int n_col2
|
|
) ;
|
|
|
|
#else /* NDEBUG */
|
|
|
|
/* === No debugging ========================================================= */
|
|
|
|
#define DEBUG0(params) ;
|
|
#define DEBUG1(params) ;
|
|
#define DEBUG2(params) ;
|
|
#define DEBUG3(params) ;
|
|
#define DEBUG4(params) ;
|
|
|
|
#define ASSERT(expression)
|
|
|
|
#endif /* NDEBUG */
|
|
|
|
/* ========================================================================== */
|
|
/* === USER-CALLABLE ROUTINES: ============================================== */
|
|
/* ========================================================================== */
|
|
|
|
/* ========================================================================== */
|
|
/* === colamd_recommended =================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
The colamd_recommended routine returns the suggested size for Alen. This
|
|
value has been determined to provide good balance between the number of
|
|
garbage collections and the memory requirements for colamd. If any
|
|
argument is negative, or if integer overflow occurs, a 0 is returned as an
|
|
error condition. 2*nnz space is required for the row and column
|
|
indices of the matrix. COLAMD_C (n_col) + COLAMD_R (n_row) space is
|
|
required for the Col and Row arrays, respectively, which are internal to
|
|
colamd (roughly 6*n_col + 4*n_row). An additional n_col space is the
|
|
minimal amount of "elbow room", and nnz/5 more space is recommended for
|
|
run time efficiency.
|
|
|
|
Alen is approximately 2.2*nnz + 7*n_col + 4*n_row + 10.
|
|
|
|
This function is not needed when using symamd.
|
|
*/
|
|
|
|
/* add two values of type size_t, and check for integer overflow */
|
|
static size_t t_add (size_t a, size_t b, int *ok)
|
|
{
|
|
(*ok) = (*ok) && ((a + b) >= MAX (a,b)) ;
|
|
return ((*ok) ? (a + b) : 0) ;
|
|
}
|
|
|
|
/* compute a*k where k is a small integer, and check for integer overflow */
|
|
static size_t t_mult (size_t a, size_t k, int *ok)
|
|
{
|
|
size_t i, s = 0 ;
|
|
for (i = 0 ; i < k ; i++)
|
|
{
|
|
s = t_add (s, a, ok) ;
|
|
}
|
|
return (s) ;
|
|
}
|
|
|
|
/* size of the Col and Row structures */
|
|
#define COLAMD_C(n_col,ok) \
|
|
((t_mult (t_add (n_col, 1, ok), sizeof (Colamd_Col), ok) / sizeof (Int)))
|
|
|
|
#define COLAMD_R(n_row,ok) \
|
|
((t_mult (t_add (n_row, 1, ok), sizeof (Colamd_Row), ok) / sizeof (Int)))
|
|
|
|
|
|
PUBLIC size_t COLAMD_recommended /* returns recommended value of Alen. */
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
Int nnz, /* number of nonzeros in A */
|
|
Int n_row, /* number of rows in A */
|
|
Int n_col /* number of columns in A */
|
|
)
|
|
{
|
|
size_t s, c, r ;
|
|
int ok = TRUE ;
|
|
if (nnz < 0 || n_row < 0 || n_col < 0)
|
|
{
|
|
return (0) ;
|
|
}
|
|
s = t_mult (nnz, 2, &ok) ; /* 2*nnz */
|
|
c = COLAMD_C (n_col, &ok) ; /* size of column structures */
|
|
r = COLAMD_R (n_row, &ok) ; /* size of row structures */
|
|
s = t_add (s, c, &ok) ;
|
|
s = t_add (s, r, &ok) ;
|
|
s = t_add (s, n_col, &ok) ; /* elbow room */
|
|
s = t_add (s, nnz/5, &ok) ; /* elbow room */
|
|
ok = ok && (s < Int_MAX) ;
|
|
return (ok ? s : 0) ;
|
|
}
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === colamd_set_defaults ================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
The colamd_set_defaults routine sets the default values of the user-
|
|
controllable parameters for colamd and symamd:
|
|
|
|
Colamd: rows with more than max (16, knobs [0] * sqrt (n_col))
|
|
entries are removed prior to ordering. Columns with more than
|
|
max (16, knobs [1] * sqrt (MIN (n_row,n_col))) entries are removed
|
|
prior to ordering, and placed last in the output column ordering.
|
|
|
|
Symamd: Rows and columns with more than max (16, knobs [0] * sqrt (n))
|
|
entries are removed prior to ordering, and placed last in the
|
|
output ordering.
|
|
|
|
knobs [0] dense row control
|
|
|
|
knobs [1] dense column control
|
|
|
|
knobs [2] if nonzero, do aggresive absorption
|
|
|
|
knobs [3..19] unused, but future versions might use this
|
|
|
|
*/
|
|
|
|
PUBLIC void COLAMD_set_defaults
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
double knobs [COLAMD_KNOBS] /* knob array */
|
|
)
|
|
{
|
|
/* === Local variables ================================================== */
|
|
|
|
Int i ;
|
|
|
|
if (!knobs)
|
|
{
|
|
return ; /* no knobs to initialize */
|
|
}
|
|
for (i = 0 ; i < COLAMD_KNOBS ; i++)
|
|
{
|
|
knobs [i] = 0 ;
|
|
}
|
|
knobs [COLAMD_DENSE_ROW] = 10 ;
|
|
knobs [COLAMD_DENSE_COL] = 10 ;
|
|
knobs [COLAMD_AGGRESSIVE] = TRUE ; /* default: do aggressive absorption*/
|
|
}
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === symamd =============================================================== */
|
|
/* ========================================================================== */
|
|
|
|
PUBLIC Int SYMAMD_MAIN /* return TRUE if OK, FALSE otherwise */
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
Int n, /* number of rows and columns of A */
|
|
Int A [], /* row indices of A */
|
|
Int p [], /* column pointers of A */
|
|
Int perm [], /* output permutation, size n+1 */
|
|
double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */
|
|
Int stats [COLAMD_STATS], /* output statistics and error codes */
|
|
void * (*allocate) (size_t, size_t),
|
|
/* pointer to calloc (ANSI C) or */
|
|
/* mxCalloc (for MATLAB mexFunction) */
|
|
void (*release) (void *)
|
|
/* pointer to free (ANSI C) or */
|
|
/* mxFree (for MATLAB mexFunction) */
|
|
)
|
|
{
|
|
/* === Local variables ================================================== */
|
|
|
|
Int *count ; /* length of each column of M, and col pointer*/
|
|
Int *mark ; /* mark array for finding duplicate entries */
|
|
Int *M ; /* row indices of matrix M */
|
|
size_t Mlen ; /* length of M */
|
|
Int n_row ; /* number of rows in M */
|
|
Int nnz ; /* number of entries in A */
|
|
Int i ; /* row index of A */
|
|
Int j ; /* column index of A */
|
|
Int k ; /* row index of M */
|
|
Int mnz ; /* number of nonzeros in M */
|
|
Int pp ; /* index into a column of A */
|
|
Int last_row ; /* last row seen in the current column */
|
|
Int length ; /* number of nonzeros in a column */
|
|
|
|
double cknobs [COLAMD_KNOBS] ; /* knobs for colamd */
|
|
double default_knobs [COLAMD_KNOBS] ; /* default knobs for colamd */
|
|
|
|
#ifndef NDEBUG
|
|
colamd_get_debug ("symamd") ;
|
|
#endif /* NDEBUG */
|
|
|
|
/* === Check the input arguments ======================================== */
|
|
|
|
if (!stats)
|
|
{
|
|
DEBUG0 (("symamd: stats not present\n")) ;
|
|
return (FALSE) ;
|
|
}
|
|
for (i = 0 ; i < COLAMD_STATS ; i++)
|
|
{
|
|
stats [i] = 0 ;
|
|
}
|
|
stats [COLAMD_STATUS] = COLAMD_OK ;
|
|
stats [COLAMD_INFO1] = -1 ;
|
|
stats [COLAMD_INFO2] = -1 ;
|
|
|
|
if (!A)
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
|
|
DEBUG0 (("symamd: A not present\n")) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
if (!p) /* p is not present */
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
|
|
DEBUG0 (("symamd: p not present\n")) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
if (n < 0) /* n must be >= 0 */
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
|
|
stats [COLAMD_INFO1] = n ;
|
|
DEBUG0 (("symamd: n negative %d\n", n)) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
nnz = p [n] ;
|
|
if (nnz < 0) /* nnz must be >= 0 */
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
|
|
stats [COLAMD_INFO1] = nnz ;
|
|
DEBUG0 (("symamd: number of entries negative %d\n", nnz)) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
if (p [0] != 0)
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
|
|
stats [COLAMD_INFO1] = p [0] ;
|
|
DEBUG0 (("symamd: p[0] not zero %d\n", p [0])) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
/* === If no knobs, set default knobs =================================== */
|
|
|
|
if (!knobs)
|
|
{
|
|
COLAMD_set_defaults (default_knobs) ;
|
|
knobs = default_knobs ;
|
|
}
|
|
|
|
/* === Allocate count and mark ========================================== */
|
|
|
|
count = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
|
|
if (!count)
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
|
|
DEBUG0 (("symamd: allocate count (size %d) failed\n", n+1)) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
mark = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
|
|
if (!mark)
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
|
|
(*release) ((void *) count) ;
|
|
DEBUG0 (("symamd: allocate mark (size %d) failed\n", n+1)) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
/* === Compute column counts of M, check if A is valid ================== */
|
|
|
|
stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
|
|
|
|
for (i = 0 ; i < n ; i++)
|
|
{
|
|
mark [i] = -1 ;
|
|
}
|
|
|
|
for (j = 0 ; j < n ; j++)
|
|
{
|
|
last_row = -1 ;
|
|
|
|
length = p [j+1] - p [j] ;
|
|
if (length < 0)
|
|
{
|
|
/* column pointers must be non-decreasing */
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
|
|
stats [COLAMD_INFO1] = j ;
|
|
stats [COLAMD_INFO2] = length ;
|
|
(*release) ((void *) count) ;
|
|
(*release) ((void *) mark) ;
|
|
DEBUG0 (("symamd: col %d negative length %d\n", j, length)) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
for (pp = p [j] ; pp < p [j+1] ; pp++)
|
|
{
|
|
i = A [pp] ;
|
|
if (i < 0 || i >= n)
|
|
{
|
|
/* row index i, in column j, is out of bounds */
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
|
|
stats [COLAMD_INFO1] = j ;
|
|
stats [COLAMD_INFO2] = i ;
|
|
stats [COLAMD_INFO3] = n ;
|
|
(*release) ((void *) count) ;
|
|
(*release) ((void *) mark) ;
|
|
DEBUG0 (("symamd: row %d col %d out of bounds\n", i, j)) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
if (i <= last_row || mark [i] == j)
|
|
{
|
|
/* row index is unsorted or repeated (or both), thus col */
|
|
/* is jumbled. This is a notice, not an error condition. */
|
|
stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
|
|
stats [COLAMD_INFO1] = j ;
|
|
stats [COLAMD_INFO2] = i ;
|
|
(stats [COLAMD_INFO3]) ++ ;
|
|
DEBUG1 (("symamd: row %d col %d unsorted/duplicate\n", i, j)) ;
|
|
}
|
|
|
|
if (i > j && mark [i] != j)
|
|
{
|
|
/* row k of M will contain column indices i and j */
|
|
count [i]++ ;
|
|
count [j]++ ;
|
|
}
|
|
|
|
/* mark the row as having been seen in this column */
|
|
mark [i] = j ;
|
|
|
|
last_row = i ;
|
|
}
|
|
}
|
|
|
|
/* v2.4: removed free(mark) */
|
|
|
|
/* === Compute column pointers of M ===================================== */
|
|
|
|
/* use output permutation, perm, for column pointers of M */
|
|
perm [0] = 0 ;
|
|
for (j = 1 ; j <= n ; j++)
|
|
{
|
|
perm [j] = perm [j-1] + count [j-1] ;
|
|
}
|
|
for (j = 0 ; j < n ; j++)
|
|
{
|
|
count [j] = perm [j] ;
|
|
}
|
|
|
|
/* === Construct M ====================================================== */
|
|
|
|
mnz = perm [n] ;
|
|
n_row = mnz / 2 ;
|
|
Mlen = COLAMD_recommended (mnz, n_row, n) ;
|
|
M = (Int *) ((*allocate) (Mlen, sizeof (Int))) ;
|
|
DEBUG0 (("symamd: M is %d-by-%d with %d entries, Mlen = %g\n",
|
|
n_row, n, mnz, (double) Mlen)) ;
|
|
|
|
if (!M)
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
|
|
(*release) ((void *) count) ;
|
|
(*release) ((void *) mark) ;
|
|
DEBUG0 (("symamd: allocate M (size %g) failed\n", (double) Mlen)) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
k = 0 ;
|
|
|
|
if (stats [COLAMD_STATUS] == COLAMD_OK)
|
|
{
|
|
/* Matrix is OK */
|
|
for (j = 0 ; j < n ; j++)
|
|
{
|
|
ASSERT (p [j+1] - p [j] >= 0) ;
|
|
for (pp = p [j] ; pp < p [j+1] ; pp++)
|
|
{
|
|
i = A [pp] ;
|
|
ASSERT (i >= 0 && i < n) ;
|
|
if (i > j)
|
|
{
|
|
/* row k of M contains column indices i and j */
|
|
M [count [i]++] = k ;
|
|
M [count [j]++] = k ;
|
|
k++ ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Matrix is jumbled. Do not add duplicates to M. Unsorted cols OK. */
|
|
DEBUG0 (("symamd: Duplicates in A.\n")) ;
|
|
for (i = 0 ; i < n ; i++)
|
|
{
|
|
mark [i] = -1 ;
|
|
}
|
|
for (j = 0 ; j < n ; j++)
|
|
{
|
|
ASSERT (p [j+1] - p [j] >= 0) ;
|
|
for (pp = p [j] ; pp < p [j+1] ; pp++)
|
|
{
|
|
i = A [pp] ;
|
|
ASSERT (i >= 0 && i < n) ;
|
|
if (i > j && mark [i] != j)
|
|
{
|
|
/* row k of M contains column indices i and j */
|
|
M [count [i]++] = k ;
|
|
M [count [j]++] = k ;
|
|
k++ ;
|
|
mark [i] = j ;
|
|
}
|
|
}
|
|
}
|
|
/* v2.4: free(mark) moved below */
|
|
}
|
|
|
|
/* count and mark no longer needed */
|
|
(*release) ((void *) count) ;
|
|
(*release) ((void *) mark) ; /* v2.4: free (mark) moved here */
|
|
ASSERT (k == n_row) ;
|
|
|
|
/* === Adjust the knobs for M =========================================== */
|
|
|
|
for (i = 0 ; i < COLAMD_KNOBS ; i++)
|
|
{
|
|
cknobs [i] = knobs [i] ;
|
|
}
|
|
|
|
/* there are no dense rows in M */
|
|
cknobs [COLAMD_DENSE_ROW] = -1 ;
|
|
cknobs [COLAMD_DENSE_COL] = knobs [COLAMD_DENSE_ROW] ;
|
|
|
|
/* === Order the columns of M =========================================== */
|
|
|
|
/* v2.4: colamd cannot fail here, so the error check is removed */
|
|
(void) COLAMD_MAIN (n_row, n, (Int) Mlen, M, perm, cknobs, stats) ;
|
|
|
|
/* Note that the output permutation is now in perm */
|
|
|
|
/* === get the statistics for symamd from colamd ======================== */
|
|
|
|
/* a dense column in colamd means a dense row and col in symamd */
|
|
stats [COLAMD_DENSE_ROW] = stats [COLAMD_DENSE_COL] ;
|
|
|
|
/* === Free M =========================================================== */
|
|
|
|
(*release) ((void *) M) ;
|
|
DEBUG0 (("symamd: done.\n")) ;
|
|
return (TRUE) ;
|
|
|
|
}
|
|
|
|
/* ========================================================================== */
|
|
/* === colamd =============================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
The colamd routine computes a column ordering Q of a sparse matrix
|
|
A such that the LU factorization P(AQ) = LU remains sparse, where P is
|
|
selected via partial pivoting. The routine can also be viewed as
|
|
providing a permutation Q such that the Cholesky factorization
|
|
(AQ)'(AQ) = LL' remains sparse.
|
|
*/
|
|
|
|
PUBLIC Int COLAMD_MAIN /* returns TRUE if successful, FALSE otherwise*/
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
Int n_row, /* number of rows in A */
|
|
Int n_col, /* number of columns in A */
|
|
Int Alen, /* length of A */
|
|
Int A [], /* row indices of A */
|
|
Int p [], /* pointers to columns in A */
|
|
double knobs [COLAMD_KNOBS],/* parameters (uses defaults if NULL) */
|
|
Int stats [COLAMD_STATS] /* output statistics and error codes */
|
|
)
|
|
{
|
|
/* === Local variables ================================================== */
|
|
|
|
Int i ; /* loop index */
|
|
Int nnz ; /* nonzeros in A */
|
|
size_t Row_size ; /* size of Row [], in integers */
|
|
size_t Col_size ; /* size of Col [], in integers */
|
|
size_t need ; /* minimum required length of A */
|
|
Colamd_Row *Row ; /* pointer into A of Row [0..n_row] array */
|
|
Colamd_Col *Col ; /* pointer into A of Col [0..n_col] array */
|
|
Int n_col2 ; /* number of non-dense, non-empty columns */
|
|
Int n_row2 ; /* number of non-dense, non-empty rows */
|
|
Int ngarbage ; /* number of garbage collections performed */
|
|
Int max_deg ; /* maximum row degree */
|
|
double default_knobs [COLAMD_KNOBS] ; /* default knobs array */
|
|
Int aggressive ; /* do aggressive absorption */
|
|
int ok ;
|
|
|
|
#ifndef NDEBUG
|
|
colamd_get_debug ("colamd") ;
|
|
#endif /* NDEBUG */
|
|
|
|
/* === Check the input arguments ======================================== */
|
|
|
|
if (!stats)
|
|
{
|
|
DEBUG0 (("colamd: stats not present\n")) ;
|
|
return (FALSE) ;
|
|
}
|
|
for (i = 0 ; i < COLAMD_STATS ; i++)
|
|
{
|
|
stats [i] = 0 ;
|
|
}
|
|
stats [COLAMD_STATUS] = COLAMD_OK ;
|
|
stats [COLAMD_INFO1] = -1 ;
|
|
stats [COLAMD_INFO2] = -1 ;
|
|
|
|
if (!A) /* A is not present */
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
|
|
DEBUG0 (("colamd: A not present\n")) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
if (!p) /* p is not present */
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
|
|
DEBUG0 (("colamd: p not present\n")) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
if (n_row < 0) /* n_row must be >= 0 */
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ;
|
|
stats [COLAMD_INFO1] = n_row ;
|
|
DEBUG0 (("colamd: nrow negative %d\n", n_row)) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
if (n_col < 0) /* n_col must be >= 0 */
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
|
|
stats [COLAMD_INFO1] = n_col ;
|
|
DEBUG0 (("colamd: ncol negative %d\n", n_col)) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
nnz = p [n_col] ;
|
|
if (nnz < 0) /* nnz must be >= 0 */
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
|
|
stats [COLAMD_INFO1] = nnz ;
|
|
DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
if (p [0] != 0)
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
|
|
stats [COLAMD_INFO1] = p [0] ;
|
|
DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
/* === If no knobs, set default knobs =================================== */
|
|
|
|
if (!knobs)
|
|
{
|
|
COLAMD_set_defaults (default_knobs) ;
|
|
knobs = default_knobs ;
|
|
}
|
|
|
|
aggressive = (knobs [COLAMD_AGGRESSIVE] != FALSE) ;
|
|
|
|
/* === Allocate the Row and Col arrays from array A ===================== */
|
|
|
|
ok = TRUE ;
|
|
Col_size = COLAMD_C (n_col, &ok) ; /* size of Col array of structs */
|
|
Row_size = COLAMD_R (n_row, &ok) ; /* size of Row array of structs */
|
|
|
|
/* need = 2*nnz + n_col + Col_size + Row_size ; */
|
|
need = t_mult (nnz, 2, &ok) ;
|
|
need = t_add (need, n_col, &ok) ;
|
|
need = t_add (need, Col_size, &ok) ;
|
|
need = t_add (need, Row_size, &ok) ;
|
|
|
|
if (!ok || need > (size_t) Alen || need > Int_MAX)
|
|
{
|
|
/* not enough space in array A to perform the ordering */
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ;
|
|
stats [COLAMD_INFO1] = need ;
|
|
stats [COLAMD_INFO2] = Alen ;
|
|
DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
|
|
return (FALSE) ;
|
|
}
|
|
|
|
Alen -= Col_size + Row_size ;
|
|
Col = (Colamd_Col *) &A [Alen] ;
|
|
Row = (Colamd_Row *) &A [Alen + Col_size] ;
|
|
|
|
/* === Construct the row and column data structures ===================== */
|
|
|
|
if (!init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
|
|
{
|
|
/* input matrix is invalid */
|
|
DEBUG0 (("colamd: Matrix invalid\n")) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
/* === Initialize scores, kill dense rows/columns ======================= */
|
|
|
|
init_scoring (n_row, n_col, Row, Col, A, p, knobs,
|
|
&n_row2, &n_col2, &max_deg) ;
|
|
|
|
/* === Order the supercolumns =========================================== */
|
|
|
|
ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p,
|
|
n_col2, max_deg, 2*nnz, aggressive) ;
|
|
|
|
/* === Order the non-principal columns ================================== */
|
|
|
|
order_children (n_col, Col, p) ;
|
|
|
|
/* === Return statistics in stats ======================================= */
|
|
|
|
stats [COLAMD_DENSE_ROW] = n_row - n_row2 ;
|
|
stats [COLAMD_DENSE_COL] = n_col - n_col2 ;
|
|
stats [COLAMD_DEFRAG_COUNT] = ngarbage ;
|
|
DEBUG0 (("colamd: done.\n")) ;
|
|
return (TRUE) ;
|
|
}
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === colamd_report ======================================================== */
|
|
/* ========================================================================== */
|
|
|
|
PUBLIC void COLAMD_report
|
|
(
|
|
Int stats [COLAMD_STATS]
|
|
)
|
|
{
|
|
print_report ("colamd", stats) ;
|
|
}
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === symamd_report ======================================================== */
|
|
/* ========================================================================== */
|
|
|
|
PUBLIC void SYMAMD_report
|
|
(
|
|
Int stats [COLAMD_STATS]
|
|
)
|
|
{
|
|
print_report ("symamd", stats) ;
|
|
}
|
|
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === NON-USER-CALLABLE ROUTINES: ========================================== */
|
|
/* ========================================================================== */
|
|
|
|
/* There are no user-callable routines beyond this point in the file */
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === init_rows_cols ======================================================= */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Takes the column form of the matrix in A and creates the row form of the
|
|
matrix. Also, row and column attributes are stored in the Col and Row
|
|
structs. If the columns are un-sorted or contain duplicate row indices,
|
|
this routine will also sort and remove duplicate row indices from the
|
|
column form of the matrix. Returns FALSE if the matrix is invalid,
|
|
TRUE otherwise. Not user-callable.
|
|
*/
|
|
|
|
PRIVATE Int init_rows_cols /* returns TRUE if OK, or FALSE otherwise */
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
Int n_row, /* number of rows of A */
|
|
Int n_col, /* number of columns of A */
|
|
Colamd_Row Row [], /* of size n_row+1 */
|
|
Colamd_Col Col [], /* of size n_col+1 */
|
|
Int A [], /* row indices of A, of size Alen */
|
|
Int p [], /* pointers to columns in A, of size n_col+1 */
|
|
Int stats [COLAMD_STATS] /* colamd statistics */
|
|
)
|
|
{
|
|
/* === Local variables ================================================== */
|
|
|
|
Int col ; /* a column index */
|
|
Int row ; /* a row index */
|
|
Int *cp ; /* a column pointer */
|
|
Int *cp_end ; /* a pointer to the end of a column */
|
|
Int *rp ; /* a row pointer */
|
|
Int *rp_end ; /* a pointer to the end of a row */
|
|
Int last_row ; /* previous row */
|
|
|
|
/* === Initialize columns, and check column pointers ==================== */
|
|
|
|
for (col = 0 ; col < n_col ; col++)
|
|
{
|
|
Col [col].start = p [col] ;
|
|
Col [col].length = p [col+1] - p [col] ;
|
|
|
|
if (Col [col].length < 0)
|
|
{
|
|
/* column pointers must be non-decreasing */
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
|
|
stats [COLAMD_INFO1] = col ;
|
|
stats [COLAMD_INFO2] = Col [col].length ;
|
|
DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
Col [col].shared1.thickness = 1 ;
|
|
Col [col].shared2.score = 0 ;
|
|
Col [col].shared3.prev = EMPTY ;
|
|
Col [col].shared4.degree_next = EMPTY ;
|
|
}
|
|
|
|
/* p [0..n_col] no longer needed, used as "head" in subsequent routines */
|
|
|
|
/* === Scan columns, compute row degrees, and check row indices ========= */
|
|
|
|
stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
|
|
|
|
for (row = 0 ; row < n_row ; row++)
|
|
{
|
|
Row [row].length = 0 ;
|
|
Row [row].shared2.mark = -1 ;
|
|
}
|
|
|
|
for (col = 0 ; col < n_col ; col++)
|
|
{
|
|
last_row = -1 ;
|
|
|
|
cp = &A [p [col]] ;
|
|
cp_end = &A [p [col+1]] ;
|
|
|
|
while (cp < cp_end)
|
|
{
|
|
row = *cp++ ;
|
|
|
|
/* make sure row indices within range */
|
|
if (row < 0 || row >= n_row)
|
|
{
|
|
stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
|
|
stats [COLAMD_INFO1] = col ;
|
|
stats [COLAMD_INFO2] = row ;
|
|
stats [COLAMD_INFO3] = n_row ;
|
|
DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ;
|
|
return (FALSE) ;
|
|
}
|
|
|
|
if (row <= last_row || Row [row].shared2.mark == col)
|
|
{
|
|
/* row index are unsorted or repeated (or both), thus col */
|
|
/* is jumbled. This is a notice, not an error condition. */
|
|
stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
|
|
stats [COLAMD_INFO1] = col ;
|
|
stats [COLAMD_INFO2] = row ;
|
|
(stats [COLAMD_INFO3]) ++ ;
|
|
DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col));
|
|
}
|
|
|
|
if (Row [row].shared2.mark != col)
|
|
{
|
|
Row [row].length++ ;
|
|
}
|
|
else
|
|
{
|
|
/* this is a repeated entry in the column, */
|
|
/* it will be removed */
|
|
Col [col].length-- ;
|
|
}
|
|
|
|
/* mark the row as having been seen in this column */
|
|
Row [row].shared2.mark = col ;
|
|
|
|
last_row = row ;
|
|
}
|
|
}
|
|
|
|
/* === Compute row pointers ============================================= */
|
|
|
|
/* row form of the matrix starts directly after the column */
|
|
/* form of matrix in A */
|
|
Row [0].start = p [n_col] ;
|
|
Row [0].shared1.p = Row [0].start ;
|
|
Row [0].shared2.mark = -1 ;
|
|
for (row = 1 ; row < n_row ; row++)
|
|
{
|
|
Row [row].start = Row [row-1].start + Row [row-1].length ;
|
|
Row [row].shared1.p = Row [row].start ;
|
|
Row [row].shared2.mark = -1 ;
|
|
}
|
|
|
|
/* === Create row form ================================================== */
|
|
|
|
if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
|
|
{
|
|
/* if cols jumbled, watch for repeated row indices */
|
|
for (col = 0 ; col < n_col ; col++)
|
|
{
|
|
cp = &A [p [col]] ;
|
|
cp_end = &A [p [col+1]] ;
|
|
while (cp < cp_end)
|
|
{
|
|
row = *cp++ ;
|
|
if (Row [row].shared2.mark != col)
|
|
{
|
|
A [(Row [row].shared1.p)++] = col ;
|
|
Row [row].shared2.mark = col ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* if cols not jumbled, we don't need the mark (this is faster) */
|
|
for (col = 0 ; col < n_col ; col++)
|
|
{
|
|
cp = &A [p [col]] ;
|
|
cp_end = &A [p [col+1]] ;
|
|
while (cp < cp_end)
|
|
{
|
|
A [(Row [*cp++].shared1.p)++] = col ;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* === Clear the row marks and set row degrees ========================== */
|
|
|
|
for (row = 0 ; row < n_row ; row++)
|
|
{
|
|
Row [row].shared2.mark = 0 ;
|
|
Row [row].shared1.degree = Row [row].length ;
|
|
}
|
|
|
|
/* === See if we need to re-create columns ============================== */
|
|
|
|
if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
|
|
{
|
|
DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ;
|
|
|
|
#ifndef NDEBUG
|
|
/* make sure column lengths are correct */
|
|
for (col = 0 ; col < n_col ; col++)
|
|
{
|
|
p [col] = Col [col].length ;
|
|
}
|
|
for (row = 0 ; row < n_row ; row++)
|
|
{
|
|
rp = &A [Row [row].start] ;
|
|
rp_end = rp + Row [row].length ;
|
|
while (rp < rp_end)
|
|
{
|
|
p [*rp++]-- ;
|
|
}
|
|
}
|
|
for (col = 0 ; col < n_col ; col++)
|
|
{
|
|
ASSERT (p [col] == 0) ;
|
|
}
|
|
/* now p is all zero (different than when debugging is turned off) */
|
|
#endif /* NDEBUG */
|
|
|
|
/* === Compute col pointers ========================================= */
|
|
|
|
/* col form of the matrix starts at A [0]. */
|
|
/* Note, we may have a gap between the col form and the row */
|
|
/* form if there were duplicate entries, if so, it will be */
|
|
/* removed upon the first garbage collection */
|
|
Col [0].start = 0 ;
|
|
p [0] = Col [0].start ;
|
|
for (col = 1 ; col < n_col ; col++)
|
|
{
|
|
/* note that the lengths here are for pruned columns, i.e. */
|
|
/* no duplicate row indices will exist for these columns */
|
|
Col [col].start = Col [col-1].start + Col [col-1].length ;
|
|
p [col] = Col [col].start ;
|
|
}
|
|
|
|
/* === Re-create col form =========================================== */
|
|
|
|
for (row = 0 ; row < n_row ; row++)
|
|
{
|
|
rp = &A [Row [row].start] ;
|
|
rp_end = rp + Row [row].length ;
|
|
while (rp < rp_end)
|
|
{
|
|
A [(p [*rp++])++] = row ;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* === Done. Matrix is not (or no longer) jumbled ====================== */
|
|
|
|
return (TRUE) ;
|
|
}
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === init_scoring ========================================================= */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Kills dense or empty columns and rows, calculates an initial score for
|
|
each column, and places all columns in the degree lists. Not user-callable.
|
|
*/
|
|
|
|
PRIVATE void init_scoring
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
Int n_row, /* number of rows of A */
|
|
Int n_col, /* number of columns of A */
|
|
Colamd_Row Row [], /* of size n_row+1 */
|
|
Colamd_Col Col [], /* of size n_col+1 */
|
|
Int A [], /* column form and row form of A */
|
|
Int head [], /* of size n_col+1 */
|
|
double knobs [COLAMD_KNOBS],/* parameters */
|
|
Int *p_n_row2, /* number of non-dense, non-empty rows */
|
|
Int *p_n_col2, /* number of non-dense, non-empty columns */
|
|
Int *p_max_deg /* maximum row degree */
|
|
)
|
|
{
|
|
/* === Local variables ================================================== */
|
|
|
|
Int c ; /* a column index */
|
|
Int r, row ; /* a row index */
|
|
Int *cp ; /* a column pointer */
|
|
Int deg ; /* degree of a row or column */
|
|
Int *cp_end ; /* a pointer to the end of a column */
|
|
Int *new_cp ; /* new column pointer */
|
|
Int col_length ; /* length of pruned column */
|
|
Int score ; /* current column score */
|
|
Int n_col2 ; /* number of non-dense, non-empty columns */
|
|
Int n_row2 ; /* number of non-dense, non-empty rows */
|
|
Int dense_row_count ; /* remove rows with more entries than this */
|
|
Int dense_col_count ; /* remove cols with more entries than this */
|
|
Int min_score ; /* smallest column score */
|
|
Int max_deg ; /* maximum row degree */
|
|
Int next_col ; /* Used to add to degree list.*/
|
|
|
|
#ifndef NDEBUG
|
|
Int debug_count ; /* debug only. */
|
|
#endif /* NDEBUG */
|
|
|
|
/* === Extract knobs ==================================================== */
|
|
|
|
/* Note: if knobs contains a NaN, this is undefined: */
|
|
if (knobs [COLAMD_DENSE_ROW] < 0)
|
|
{
|
|
/* only remove completely dense rows */
|
|
dense_row_count = n_col-1 ;
|
|
}
|
|
else
|
|
{
|
|
dense_row_count = DENSE_DEGREE (knobs [COLAMD_DENSE_ROW], n_col) ;
|
|
}
|
|
if (knobs [COLAMD_DENSE_COL] < 0)
|
|
{
|
|
/* only remove completely dense columns */
|
|
dense_col_count = n_row-1 ;
|
|
}
|
|
else
|
|
{
|
|
dense_col_count =
|
|
DENSE_DEGREE (knobs [COLAMD_DENSE_COL], MIN (n_row, n_col)) ;
|
|
}
|
|
|
|
DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
|
|
max_deg = 0 ;
|
|
n_col2 = n_col ;
|
|
n_row2 = n_row ;
|
|
|
|
/* === Kill empty columns =============================================== */
|
|
|
|
/* Put the empty columns at the end in their natural order, so that LU */
|
|
/* factorization can proceed as far as possible. */
|
|
for (c = n_col-1 ; c >= 0 ; c--)
|
|
{
|
|
deg = Col [c].length ;
|
|
if (deg == 0)
|
|
{
|
|
/* this is a empty column, kill and order it last */
|
|
Col [c].shared2.order = --n_col2 ;
|
|
KILL_PRINCIPAL_COL (c) ;
|
|
}
|
|
}
|
|
DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ;
|
|
|
|
/* === Kill dense columns =============================================== */
|
|
|
|
/* Put the dense columns at the end, in their natural order */
|
|
for (c = n_col-1 ; c >= 0 ; c--)
|
|
{
|
|
/* skip any dead columns */
|
|
if (COL_IS_DEAD (c))
|
|
{
|
|
continue ;
|
|
}
|
|
deg = Col [c].length ;
|
|
if (deg > dense_col_count)
|
|
{
|
|
/* this is a dense column, kill and order it last */
|
|
Col [c].shared2.order = --n_col2 ;
|
|
/* decrement the row degrees */
|
|
cp = &A [Col [c].start] ;
|
|
cp_end = cp + Col [c].length ;
|
|
while (cp < cp_end)
|
|
{
|
|
Row [*cp++].shared1.degree-- ;
|
|
}
|
|
KILL_PRINCIPAL_COL (c) ;
|
|
}
|
|
}
|
|
DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;
|
|
|
|
/* === Kill dense and empty rows ======================================== */
|
|
|
|
for (r = 0 ; r < n_row ; r++)
|
|
{
|
|
deg = Row [r].shared1.degree ;
|
|
ASSERT (deg >= 0 && deg <= n_col) ;
|
|
if (deg > dense_row_count || deg == 0)
|
|
{
|
|
/* kill a dense or empty row */
|
|
KILL_ROW (r) ;
|
|
--n_row2 ;
|
|
}
|
|
else
|
|
{
|
|
/* keep track of max degree of remaining rows */
|
|
max_deg = MAX (max_deg, deg) ;
|
|
}
|
|
}
|
|
DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;
|
|
|
|
/* === Compute initial column scores ==================================== */
|
|
|
|
/* At this point the row degrees are accurate. They reflect the number */
|
|
/* of "live" (non-dense) columns in each row. No empty rows exist. */
|
|
/* Some "live" columns may contain only dead rows, however. These are */
|
|
/* pruned in the code below. */
|
|
|
|
/* now find the initial matlab score for each column */
|
|
for (c = n_col-1 ; c >= 0 ; c--)
|
|
{
|
|
/* skip dead column */
|
|
if (COL_IS_DEAD (c))
|
|
{
|
|
continue ;
|
|
}
|
|
score = 0 ;
|
|
cp = &A [Col [c].start] ;
|
|
new_cp = cp ;
|
|
cp_end = cp + Col [c].length ;
|
|
while (cp < cp_end)
|
|
{
|
|
/* get a row */
|
|
row = *cp++ ;
|
|
/* skip if dead */
|
|
if (ROW_IS_DEAD (row))
|
|
{
|
|
continue ;
|
|
}
|
|
/* compact the column */
|
|
*new_cp++ = row ;
|
|
/* add row's external degree */
|
|
score += Row [row].shared1.degree - 1 ;
|
|
/* guard against integer overflow */
|
|
score = MIN (score, n_col) ;
|
|
}
|
|
/* determine pruned column length */
|
|
col_length = (Int) (new_cp - &A [Col [c].start]) ;
|
|
if (col_length == 0)
|
|
{
|
|
/* a newly-made null column (all rows in this col are "dense" */
|
|
/* and have already been killed) */
|
|
DEBUG2 (("Newly null killed: %d\n", c)) ;
|
|
Col [c].shared2.order = --n_col2 ;
|
|
KILL_PRINCIPAL_COL (c) ;
|
|
}
|
|
else
|
|
{
|
|
/* set column length and set score */
|
|
ASSERT (score >= 0) ;
|
|
ASSERT (score <= n_col) ;
|
|
Col [c].length = col_length ;
|
|
Col [c].shared2.score = score ;
|
|
}
|
|
}
|
|
DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n",
|
|
n_col-n_col2)) ;
|
|
|
|
/* At this point, all empty rows and columns are dead. All live columns */
|
|
/* are "clean" (containing no dead rows) and simplicial (no supercolumns */
|
|
/* yet). Rows may contain dead columns, but all live rows contain at */
|
|
/* least one live column. */
|
|
|
|
#ifndef NDEBUG
|
|
debug_structures (n_row, n_col, Row, Col, A, n_col2) ;
|
|
#endif /* NDEBUG */
|
|
|
|
/* === Initialize degree lists ========================================== */
|
|
|
|
#ifndef NDEBUG
|
|
debug_count = 0 ;
|
|
#endif /* NDEBUG */
|
|
|
|
/* clear the hash buckets */
|
|
for (c = 0 ; c <= n_col ; c++)
|
|
{
|
|
head [c] = EMPTY ;
|
|
}
|
|
min_score = n_col ;
|
|
/* place in reverse order, so low column indices are at the front */
|
|
/* of the lists. This is to encourage natural tie-breaking */
|
|
for (c = n_col-1 ; c >= 0 ; c--)
|
|
{
|
|
/* only add principal columns to degree lists */
|
|
if (COL_IS_ALIVE (c))
|
|
{
|
|
DEBUG4 (("place %d score %d minscore %d ncol %d\n",
|
|
c, Col [c].shared2.score, min_score, n_col)) ;
|
|
|
|
/* === Add columns score to DList =============================== */
|
|
|
|
score = Col [c].shared2.score ;
|
|
|
|
ASSERT (min_score >= 0) ;
|
|
ASSERT (min_score <= n_col) ;
|
|
ASSERT (score >= 0) ;
|
|
ASSERT (score <= n_col) ;
|
|
ASSERT (head [score] >= EMPTY) ;
|
|
|
|
/* now add this column to dList at proper score location */
|
|
next_col = head [score] ;
|
|
Col [c].shared3.prev = EMPTY ;
|
|
Col [c].shared4.degree_next = next_col ;
|
|
|
|
/* if there already was a column with the same score, set its */
|
|
/* previous pointer to this new column */
|
|
if (next_col != EMPTY)
|
|
{
|
|
Col [next_col].shared3.prev = c ;
|
|
}
|
|
head [score] = c ;
|
|
|
|
/* see if this score is less than current min */
|
|
min_score = MIN (min_score, score) ;
|
|
|
|
#ifndef NDEBUG
|
|
debug_count++ ;
|
|
#endif /* NDEBUG */
|
|
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
DEBUG1 (("colamd: Live cols %d out of %d, non-princ: %d\n",
|
|
debug_count, n_col, n_col-debug_count)) ;
|
|
ASSERT (debug_count == n_col2) ;
|
|
debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2, max_deg) ;
|
|
#endif /* NDEBUG */
|
|
|
|
/* === Return number of remaining columns, and max row degree =========== */
|
|
|
|
*p_n_col2 = n_col2 ;
|
|
*p_n_row2 = n_row2 ;
|
|
*p_max_deg = max_deg ;
|
|
}
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === find_ordering ======================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Order the principal columns of the supercolumn form of the matrix
|
|
(no supercolumns on input). Uses a minimum approximate column minimum
|
|
degree ordering method. Not user-callable.
|
|
*/
|
|
|
|
PRIVATE Int find_ordering /* return the number of garbage collections */
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
Int n_row, /* number of rows of A */
|
|
Int n_col, /* number of columns of A */
|
|
Int Alen, /* size of A, 2*nnz + n_col or larger */
|
|
Colamd_Row Row [], /* of size n_row+1 */
|
|
Colamd_Col Col [], /* of size n_col+1 */
|
|
Int A [], /* column form and row form of A */
|
|
Int head [], /* of size n_col+1 */
|
|
Int n_col2, /* Remaining columns to order */
|
|
Int max_deg, /* Maximum row degree */
|
|
Int pfree, /* index of first free slot (2*nnz on entry) */
|
|
Int aggressive
|
|
)
|
|
{
|
|
/* === Local variables ================================================== */
|
|
|
|
Int k ; /* current pivot ordering step */
|
|
Int pivot_col ; /* current pivot column */
|
|
Int *cp ; /* a column pointer */
|
|
Int *rp ; /* a row pointer */
|
|
Int pivot_row ; /* current pivot row */
|
|
Int *new_cp ; /* modified column pointer */
|
|
Int *new_rp ; /* modified row pointer */
|
|
Int pivot_row_start ; /* pointer to start of pivot row */
|
|
Int pivot_row_degree ; /* number of columns in pivot row */
|
|
Int pivot_row_length ; /* number of supercolumns in pivot row */
|
|
Int pivot_col_score ; /* score of pivot column */
|
|
Int needed_memory ; /* free space needed for pivot row */
|
|
Int *cp_end ; /* pointer to the end of a column */
|
|
Int *rp_end ; /* pointer to the end of a row */
|
|
Int row ; /* a row index */
|
|
Int col ; /* a column index */
|
|
Int max_score ; /* maximum possible score */
|
|
Int cur_score ; /* score of current column */
|
|
unsigned Int hash ; /* hash value for supernode detection */
|
|
Int head_column ; /* head of hash bucket */
|
|
Int first_col ; /* first column in hash bucket */
|
|
Int tag_mark ; /* marker value for mark array */
|
|
Int row_mark ; /* Row [row].shared2.mark */
|
|
Int set_difference ; /* set difference size of row with pivot row */
|
|
Int min_score ; /* smallest column score */
|
|
Int col_thickness ; /* "thickness" (no. of columns in a supercol) */
|
|
Int max_mark ; /* maximum value of tag_mark */
|
|
Int pivot_col_thickness ; /* number of columns represented by pivot col */
|
|
Int prev_col ; /* Used by Dlist operations. */
|
|
Int next_col ; /* Used by Dlist operations. */
|
|
Int ngarbage ; /* number of garbage collections performed */
|
|
|
|
#ifndef NDEBUG
|
|
Int debug_d ; /* debug loop counter */
|
|
Int debug_step = 0 ; /* debug loop counter */
|
|
#endif /* NDEBUG */
|
|
|
|
/* === Initialization and clear mark ==================================== */
|
|
|
|
max_mark = INT_MAX - n_col ; /* INT_MAX defined in <limits.h> */
|
|
tag_mark = clear_mark (0, max_mark, n_row, Row) ;
|
|
min_score = 0 ;
|
|
ngarbage = 0 ;
|
|
DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ;
|
|
|
|
/* === Order the columns ================================================ */
|
|
|
|
for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
|
|
{
|
|
|
|
#ifndef NDEBUG
|
|
if (debug_step % 100 == 0)
|
|
{
|
|
DEBUG2 (("\n... Step k: %d out of n_col2: %d\n", k, n_col2)) ;
|
|
}
|
|
else
|
|
{
|
|
DEBUG3 (("\n----------Step k: %d out of n_col2: %d\n", k, n_col2)) ;
|
|
}
|
|
debug_step++ ;
|
|
debug_deg_lists (n_row, n_col, Row, Col, head,
|
|
min_score, n_col2-k, max_deg) ;
|
|
debug_matrix (n_row, n_col, Row, Col, A) ;
|
|
#endif /* NDEBUG */
|
|
|
|
/* === Select pivot column, and order it ============================ */
|
|
|
|
/* make sure degree list isn't empty */
|
|
ASSERT (min_score >= 0) ;
|
|
ASSERT (min_score <= n_col) ;
|
|
ASSERT (head [min_score] >= EMPTY) ;
|
|
|
|
#ifndef NDEBUG
|
|
for (debug_d = 0 ; debug_d < min_score ; debug_d++)
|
|
{
|
|
ASSERT (head [debug_d] == EMPTY) ;
|
|
}
|
|
#endif /* NDEBUG */
|
|
|
|
/* get pivot column from head of minimum degree list */
|
|
while (head [min_score] == EMPTY && min_score < n_col)
|
|
{
|
|
min_score++ ;
|
|
}
|
|
pivot_col = head [min_score] ;
|
|
ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
|
|
next_col = Col [pivot_col].shared4.degree_next ;
|
|
head [min_score] = next_col ;
|
|
if (next_col != EMPTY)
|
|
{
|
|
Col [next_col].shared3.prev = EMPTY ;
|
|
}
|
|
|
|
ASSERT (COL_IS_ALIVE (pivot_col)) ;
|
|
|
|
/* remember score for defrag check */
|
|
pivot_col_score = Col [pivot_col].shared2.score ;
|
|
|
|
/* the pivot column is the kth column in the pivot order */
|
|
Col [pivot_col].shared2.order = k ;
|
|
|
|
/* increment order count by column thickness */
|
|
pivot_col_thickness = Col [pivot_col].shared1.thickness ;
|
|
k += pivot_col_thickness ;
|
|
ASSERT (pivot_col_thickness > 0) ;
|
|
DEBUG3 (("Pivot col: %d thick %d\n", pivot_col, pivot_col_thickness)) ;
|
|
|
|
/* === Garbage_collection, if necessary ============================= */
|
|
|
|
needed_memory = MIN (pivot_col_score, n_col - k) ;
|
|
if (pfree + needed_memory >= Alen)
|
|
{
|
|
pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
|
|
ngarbage++ ;
|
|
/* after garbage collection we will have enough */
|
|
ASSERT (pfree + needed_memory < Alen) ;
|
|
/* garbage collection has wiped out the Row[].shared2.mark array */
|
|
tag_mark = clear_mark (0, max_mark, n_row, Row) ;
|
|
|
|
#ifndef NDEBUG
|
|
debug_matrix (n_row, n_col, Row, Col, A) ;
|
|
#endif /* NDEBUG */
|
|
}
|
|
|
|
/* === Compute pivot row pattern ==================================== */
|
|
|
|
/* get starting location for this new merged row */
|
|
pivot_row_start = pfree ;
|
|
|
|
/* initialize new row counts to zero */
|
|
pivot_row_degree = 0 ;
|
|
|
|
/* tag pivot column as having been visited so it isn't included */
|
|
/* in merged pivot row */
|
|
Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
|
|
|
|
/* pivot row is the union of all rows in the pivot column pattern */
|
|
cp = &A [Col [pivot_col].start] ;
|
|
cp_end = cp + Col [pivot_col].length ;
|
|
while (cp < cp_end)
|
|
{
|
|
/* get a row */
|
|
row = *cp++ ;
|
|
DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ;
|
|
/* skip if row is dead */
|
|
if (ROW_IS_ALIVE (row))
|
|
{
|
|
rp = &A [Row [row].start] ;
|
|
rp_end = rp + Row [row].length ;
|
|
while (rp < rp_end)
|
|
{
|
|
/* get a column */
|
|
col = *rp++ ;
|
|
/* add the column, if alive and untagged */
|
|
col_thickness = Col [col].shared1.thickness ;
|
|
if (col_thickness > 0 && COL_IS_ALIVE (col))
|
|
{
|
|
/* tag column in pivot row */
|
|
Col [col].shared1.thickness = -col_thickness ;
|
|
ASSERT (pfree < Alen) ;
|
|
/* place column in pivot row */
|
|
A [pfree++] = col ;
|
|
pivot_row_degree += col_thickness ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* clear tag on pivot column */
|
|
Col [pivot_col].shared1.thickness = pivot_col_thickness ;
|
|
max_deg = MAX (max_deg, pivot_row_degree) ;
|
|
|
|
#ifndef NDEBUG
|
|
DEBUG3 (("check2\n")) ;
|
|
debug_mark (n_row, Row, tag_mark, max_mark) ;
|
|
#endif /* NDEBUG */
|
|
|
|
/* === Kill all rows used to construct pivot row ==================== */
|
|
|
|
/* also kill pivot row, temporarily */
|
|
cp = &A [Col [pivot_col].start] ;
|
|
cp_end = cp + Col [pivot_col].length ;
|
|
while (cp < cp_end)
|
|
{
|
|
/* may be killing an already dead row */
|
|
row = *cp++ ;
|
|
DEBUG3 (("Kill row in pivot col: %d\n", row)) ;
|
|
KILL_ROW (row) ;
|
|
}
|
|
|
|
/* === Select a row index to use as the new pivot row =============== */
|
|
|
|
pivot_row_length = pfree - pivot_row_start ;
|
|
if (pivot_row_length > 0)
|
|
{
|
|
/* pick the "pivot" row arbitrarily (first row in col) */
|
|
pivot_row = A [Col [pivot_col].start] ;
|
|
DEBUG3 (("Pivotal row is %d\n", pivot_row)) ;
|
|
}
|
|
else
|
|
{
|
|
/* there is no pivot row, since it is of zero length */
|
|
pivot_row = EMPTY ;
|
|
ASSERT (pivot_row_length == 0) ;
|
|
}
|
|
ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
|
|
|
|
/* === Approximate degree computation =============================== */
|
|
|
|
/* Here begins the computation of the approximate degree. The column */
|
|
/* score is the sum of the pivot row "length", plus the size of the */
|
|
/* set differences of each row in the column minus the pattern of the */
|
|
/* pivot row itself. The column ("thickness") itself is also */
|
|
/* excluded from the column score (we thus use an approximate */
|
|
/* external degree). */
|
|
|
|
/* The time taken by the following code (compute set differences, and */
|
|
/* add them up) is proportional to the size of the data structure */
|
|
/* being scanned - that is, the sum of the sizes of each column in */
|
|
/* the pivot row. Thus, the amortized time to compute a column score */
|
|
/* is proportional to the size of that column (where size, in this */
|
|
/* context, is the column "length", or the number of row indices */
|
|
/* in that column). The number of row indices in a column is */
|
|
/* monotonically non-decreasing, from the length of the original */
|
|
/* column on input to colamd. */
|
|
|
|
/* === Compute set differences ====================================== */
|
|
|
|
DEBUG3 (("** Computing set differences phase. **\n")) ;
|
|
|
|
/* pivot row is currently dead - it will be revived later. */
|
|
|
|
DEBUG3 (("Pivot row: ")) ;
|
|
/* for each column in pivot row */
|
|
rp = &A [pivot_row_start] ;
|
|
rp_end = rp + pivot_row_length ;
|
|
while (rp < rp_end)
|
|
{
|
|
col = *rp++ ;
|
|
ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
|
|
DEBUG3 (("Col: %d\n", col)) ;
|
|
|
|
/* clear tags used to construct pivot row pattern */
|
|
col_thickness = -Col [col].shared1.thickness ;
|
|
ASSERT (col_thickness > 0) ;
|
|
Col [col].shared1.thickness = col_thickness ;
|
|
|
|
/* === Remove column from degree list =========================== */
|
|
|
|
cur_score = Col [col].shared2.score ;
|
|
prev_col = Col [col].shared3.prev ;
|
|
next_col = Col [col].shared4.degree_next ;
|
|
ASSERT (cur_score >= 0) ;
|
|
ASSERT (cur_score <= n_col) ;
|
|
ASSERT (cur_score >= EMPTY) ;
|
|
if (prev_col == EMPTY)
|
|
{
|
|
head [cur_score] = next_col ;
|
|
}
|
|
else
|
|
{
|
|
Col [prev_col].shared4.degree_next = next_col ;
|
|
}
|
|
if (next_col != EMPTY)
|
|
{
|
|
Col [next_col].shared3.prev = prev_col ;
|
|
}
|
|
|
|
/* === Scan the column ========================================== */
|
|
|
|
cp = &A [Col [col].start] ;
|
|
cp_end = cp + Col [col].length ;
|
|
while (cp < cp_end)
|
|
{
|
|
/* get a row */
|
|
row = *cp++ ;
|
|
row_mark = Row [row].shared2.mark ;
|
|
/* skip if dead */
|
|
if (ROW_IS_MARKED_DEAD (row_mark))
|
|
{
|
|
continue ;
|
|
}
|
|
ASSERT (row != pivot_row) ;
|
|
set_difference = row_mark - tag_mark ;
|
|
/* check if the row has been seen yet */
|
|
if (set_difference < 0)
|
|
{
|
|
ASSERT (Row [row].shared1.degree <= max_deg) ;
|
|
set_difference = Row [row].shared1.degree ;
|
|
}
|
|
/* subtract column thickness from this row's set difference */
|
|
set_difference -= col_thickness ;
|
|
ASSERT (set_difference >= 0) ;
|
|
/* absorb this row if the set difference becomes zero */
|
|
if (set_difference == 0 && aggressive)
|
|
{
|
|
DEBUG3 (("aggressive absorption. Row: %d\n", row)) ;
|
|
KILL_ROW (row) ;
|
|
}
|
|
else
|
|
{
|
|
/* save the new mark */
|
|
Row [row].shared2.mark = set_difference + tag_mark ;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
debug_deg_lists (n_row, n_col, Row, Col, head,
|
|
min_score, n_col2-k-pivot_row_degree, max_deg) ;
|
|
#endif /* NDEBUG */
|
|
|
|
/* === Add up set differences for each column ======================= */
|
|
|
|
DEBUG3 (("** Adding set differences phase. **\n")) ;
|
|
|
|
/* for each column in pivot row */
|
|
rp = &A [pivot_row_start] ;
|
|
rp_end = rp + pivot_row_length ;
|
|
while (rp < rp_end)
|
|
{
|
|
/* get a column */
|
|
col = *rp++ ;
|
|
ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
|
|
hash = 0 ;
|
|
cur_score = 0 ;
|
|
cp = &A [Col [col].start] ;
|
|
/* compact the column */
|
|
new_cp = cp ;
|
|
cp_end = cp + Col [col].length ;
|
|
|
|
DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ;
|
|
|
|
while (cp < cp_end)
|
|
{
|
|
/* get a row */
|
|
row = *cp++ ;
|
|
ASSERT(row >= 0 && row < n_row) ;
|
|
row_mark = Row [row].shared2.mark ;
|
|
/* skip if dead */
|
|
if (ROW_IS_MARKED_DEAD (row_mark))
|
|
{
|
|
DEBUG4 ((" Row %d, dead\n", row)) ;
|
|
continue ;
|
|
}
|
|
DEBUG4 ((" Row %d, set diff %d\n", row, row_mark-tag_mark));
|
|
ASSERT (row_mark >= tag_mark) ;
|
|
/* compact the column */
|
|
*new_cp++ = row ;
|
|
/* compute hash function */
|
|
hash += row ;
|
|
/* add set difference */
|
|
cur_score += row_mark - tag_mark ;
|
|
/* integer overflow... */
|
|
cur_score = MIN (cur_score, n_col) ;
|
|
}
|
|
|
|
/* recompute the column's length */
|
|
Col [col].length = (Int) (new_cp - &A [Col [col].start]) ;
|
|
|
|
/* === Further mass elimination ================================= */
|
|
|
|
if (Col [col].length == 0)
|
|
{
|
|
DEBUG4 (("further mass elimination. Col: %d\n", col)) ;
|
|
/* nothing left but the pivot row in this column */
|
|
KILL_PRINCIPAL_COL (col) ;
|
|
pivot_row_degree -= Col [col].shared1.thickness ;
|
|
ASSERT (pivot_row_degree >= 0) ;
|
|
/* order it */
|
|
Col [col].shared2.order = k ;
|
|
/* increment order count by column thickness */
|
|
k += Col [col].shared1.thickness ;
|
|
}
|
|
else
|
|
{
|
|
/* === Prepare for supercolumn detection ==================== */
|
|
|
|
DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ;
|
|
|
|
/* save score so far */
|
|
Col [col].shared2.score = cur_score ;
|
|
|
|
/* add column to hash table, for supercolumn detection */
|
|
hash %= n_col + 1 ;
|
|
|
|
DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
|
|
ASSERT (((Int) hash) <= n_col) ;
|
|
|
|
head_column = head [hash] ;
|
|
if (head_column > EMPTY)
|
|
{
|
|
/* degree list "hash" is non-empty, use prev (shared3) of */
|
|
/* first column in degree list as head of hash bucket */
|
|
first_col = Col [head_column].shared3.headhash ;
|
|
Col [head_column].shared3.headhash = col ;
|
|
}
|
|
else
|
|
{
|
|
/* degree list "hash" is empty, use head as hash bucket */
|
|
first_col = - (head_column + 2) ;
|
|
head [hash] = - (col + 2) ;
|
|
}
|
|
Col [col].shared4.hash_next = first_col ;
|
|
|
|
/* save hash function in Col [col].shared3.hash */
|
|
Col [col].shared3.hash = (Int) hash ;
|
|
ASSERT (COL_IS_ALIVE (col)) ;
|
|
}
|
|
}
|
|
|
|
/* The approximate external column degree is now computed. */
|
|
|
|
/* === Supercolumn detection ======================================== */
|
|
|
|
DEBUG3 (("** Supercolumn detection phase. **\n")) ;
|
|
|
|
detect_super_cols (
|
|
|
|
#ifndef NDEBUG
|
|
n_col, Row,
|
|
#endif /* NDEBUG */
|
|
|
|
Col, A, head, pivot_row_start, pivot_row_length) ;
|
|
|
|
/* === Kill the pivotal column ====================================== */
|
|
|
|
KILL_PRINCIPAL_COL (pivot_col) ;
|
|
|
|
/* === Clear mark =================================================== */
|
|
|
|
tag_mark = clear_mark (tag_mark+max_deg+1, max_mark, n_row, Row) ;
|
|
|
|
#ifndef NDEBUG
|
|
DEBUG3 (("check3\n")) ;
|
|
debug_mark (n_row, Row, tag_mark, max_mark) ;
|
|
#endif /* NDEBUG */
|
|
|
|
/* === Finalize the new pivot row, and column scores ================ */
|
|
|
|
DEBUG3 (("** Finalize scores phase. **\n")) ;
|
|
|
|
/* for each column in pivot row */
|
|
rp = &A [pivot_row_start] ;
|
|
/* compact the pivot row */
|
|
new_rp = rp ;
|
|
rp_end = rp + pivot_row_length ;
|
|
while (rp < rp_end)
|
|
{
|
|
col = *rp++ ;
|
|
/* skip dead columns */
|
|
if (COL_IS_DEAD (col))
|
|
{
|
|
continue ;
|
|
}
|
|
*new_rp++ = col ;
|
|
/* add new pivot row to column */
|
|
A [Col [col].start + (Col [col].length++)] = pivot_row ;
|
|
|
|
/* retrieve score so far and add on pivot row's degree. */
|
|
/* (we wait until here for this in case the pivot */
|
|
/* row's degree was reduced due to mass elimination). */
|
|
cur_score = Col [col].shared2.score + pivot_row_degree ;
|
|
|
|
/* calculate the max possible score as the number of */
|
|
/* external columns minus the 'k' value minus the */
|
|
/* columns thickness */
|
|
max_score = n_col - k - Col [col].shared1.thickness ;
|
|
|
|
/* make the score the external degree of the union-of-rows */
|
|
cur_score -= Col [col].shared1.thickness ;
|
|
|
|
/* make sure score is less or equal than the max score */
|
|
cur_score = MIN (cur_score, max_score) ;
|
|
ASSERT (cur_score >= 0) ;
|
|
|
|
/* store updated score */
|
|
Col [col].shared2.score = cur_score ;
|
|
|
|
/* === Place column back in degree list ========================= */
|
|
|
|
ASSERT (min_score >= 0) ;
|
|
ASSERT (min_score <= n_col) ;
|
|
ASSERT (cur_score >= 0) ;
|
|
ASSERT (cur_score <= n_col) ;
|
|
ASSERT (head [cur_score] >= EMPTY) ;
|
|
next_col = head [cur_score] ;
|
|
Col [col].shared4.degree_next = next_col ;
|
|
Col [col].shared3.prev = EMPTY ;
|
|
if (next_col != EMPTY)
|
|
{
|
|
Col [next_col].shared3.prev = col ;
|
|
}
|
|
head [cur_score] = col ;
|
|
|
|
/* see if this score is less than current min */
|
|
min_score = MIN (min_score, cur_score) ;
|
|
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
debug_deg_lists (n_row, n_col, Row, Col, head,
|
|
min_score, n_col2-k, max_deg) ;
|
|
#endif /* NDEBUG */
|
|
|
|
/* === Resurrect the new pivot row ================================== */
|
|
|
|
if (pivot_row_degree > 0)
|
|
{
|
|
/* update pivot row length to reflect any cols that were killed */
|
|
/* during super-col detection and mass elimination */
|
|
Row [pivot_row].start = pivot_row_start ;
|
|
Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ;
|
|
ASSERT (Row [pivot_row].length > 0) ;
|
|
Row [pivot_row].shared1.degree = pivot_row_degree ;
|
|
Row [pivot_row].shared2.mark = 0 ;
|
|
/* pivot row is no longer dead */
|
|
|
|
DEBUG1 (("Resurrect Pivot_row %d deg: %d\n",
|
|
pivot_row, pivot_row_degree)) ;
|
|
}
|
|
}
|
|
|
|
/* === All principal columns have now been ordered ====================== */
|
|
|
|
return (ngarbage) ;
|
|
}
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === order_children ======================================================= */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
The find_ordering routine has ordered all of the principal columns (the
|
|
representatives of the supercolumns). The non-principal columns have not
|
|
yet been ordered. This routine orders those columns by walking up the
|
|
parent tree (a column is a child of the column which absorbed it). The
|
|
final permutation vector is then placed in p [0 ... n_col-1], with p [0]
|
|
being the first column, and p [n_col-1] being the last. It doesn't look
|
|
like it at first glance, but be assured that this routine takes time linear
|
|
in the number of columns. Although not immediately obvious, the time
|
|
taken by this routine is O (n_col), that is, linear in the number of
|
|
columns. Not user-callable.
|
|
*/
|
|
|
|
PRIVATE void order_children
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
Int n_col, /* number of columns of A */
|
|
Colamd_Col Col [], /* of size n_col+1 */
|
|
Int p [] /* p [0 ... n_col-1] is the column permutation*/
|
|
)
|
|
{
|
|
/* === Local variables ================================================== */
|
|
|
|
Int i ; /* loop counter for all columns */
|
|
Int c ; /* column index */
|
|
Int parent ; /* index of column's parent */
|
|
Int order ; /* column's order */
|
|
|
|
/* === Order each non-principal column ================================== */
|
|
|
|
for (i = 0 ; i < n_col ; i++)
|
|
{
|
|
/* find an un-ordered non-principal column */
|
|
ASSERT (COL_IS_DEAD (i)) ;
|
|
if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == EMPTY)
|
|
{
|
|
parent = i ;
|
|
/* once found, find its principal parent */
|
|
do
|
|
{
|
|
parent = Col [parent].shared1.parent ;
|
|
} while (!COL_IS_DEAD_PRINCIPAL (parent)) ;
|
|
|
|
/* now, order all un-ordered non-principal columns along path */
|
|
/* to this parent. collapse tree at the same time */
|
|
c = i ;
|
|
/* get order of parent */
|
|
order = Col [parent].shared2.order ;
|
|
|
|
do
|
|
{
|
|
ASSERT (Col [c].shared2.order == EMPTY) ;
|
|
|
|
/* order this column */
|
|
Col [c].shared2.order = order++ ;
|
|
/* collaps tree */
|
|
Col [c].shared1.parent = parent ;
|
|
|
|
/* get immediate parent of this column */
|
|
c = Col [c].shared1.parent ;
|
|
|
|
/* continue until we hit an ordered column. There are */
|
|
/* guarranteed not to be anymore unordered columns */
|
|
/* above an ordered column */
|
|
} while (Col [c].shared2.order == EMPTY) ;
|
|
|
|
/* re-order the super_col parent to largest order for this group */
|
|
Col [parent].shared2.order = order ;
|
|
}
|
|
}
|
|
|
|
/* === Generate the permutation ========================================= */
|
|
|
|
for (c = 0 ; c < n_col ; c++)
|
|
{
|
|
p [Col [c].shared2.order] = c ;
|
|
}
|
|
}
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === detect_super_cols ==================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Detects supercolumns by finding matches between columns in the hash buckets.
|
|
Check amongst columns in the set A [row_start ... row_start + row_length-1].
|
|
The columns under consideration are currently *not* in the degree lists,
|
|
and have already been placed in the hash buckets.
|
|
|
|
The hash bucket for columns whose hash function is equal to h is stored
|
|
as follows:
|
|
|
|
if head [h] is >= 0, then head [h] contains a degree list, so:
|
|
|
|
head [h] is the first column in degree bucket h.
|
|
Col [head [h]].headhash gives the first column in hash bucket h.
|
|
|
|
otherwise, the degree list is empty, and:
|
|
|
|
-(head [h] + 2) is the first column in hash bucket h.
|
|
|
|
For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
|
|
column" pointer. Col [c].shared3.hash is used instead as the hash number
|
|
for that column. The value of Col [c].shared4.hash_next is the next column
|
|
in the same hash bucket.
|
|
|
|
Assuming no, or "few" hash collisions, the time taken by this routine is
|
|
linear in the sum of the sizes (lengths) of each column whose score has
|
|
just been computed in the approximate degree computation.
|
|
Not user-callable.
|
|
*/
|
|
|
|
PRIVATE void detect_super_cols
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
#ifndef NDEBUG
|
|
/* these two parameters are only needed when debugging is enabled: */
|
|
Int n_col, /* number of columns of A */
|
|
Colamd_Row Row [], /* of size n_row+1 */
|
|
#endif /* NDEBUG */
|
|
|
|
Colamd_Col Col [], /* of size n_col+1 */
|
|
Int A [], /* row indices of A */
|
|
Int head [], /* head of degree lists and hash buckets */
|
|
Int row_start, /* pointer to set of columns to check */
|
|
Int row_length /* number of columns to check */
|
|
)
|
|
{
|
|
/* === Local variables ================================================== */
|
|
|
|
Int hash ; /* hash value for a column */
|
|
Int *rp ; /* pointer to a row */
|
|
Int c ; /* a column index */
|
|
Int super_c ; /* column index of the column to absorb into */
|
|
Int *cp1 ; /* column pointer for column super_c */
|
|
Int *cp2 ; /* column pointer for column c */
|
|
Int length ; /* length of column super_c */
|
|
Int prev_c ; /* column preceding c in hash bucket */
|
|
Int i ; /* loop counter */
|
|
Int *rp_end ; /* pointer to the end of the row */
|
|
Int col ; /* a column index in the row to check */
|
|
Int head_column ; /* first column in hash bucket or degree list */
|
|
Int first_col ; /* first column in hash bucket */
|
|
|
|
/* === Consider each column in the row ================================== */
|
|
|
|
rp = &A [row_start] ;
|
|
rp_end = rp + row_length ;
|
|
while (rp < rp_end)
|
|
{
|
|
col = *rp++ ;
|
|
if (COL_IS_DEAD (col))
|
|
{
|
|
continue ;
|
|
}
|
|
|
|
/* get hash number for this column */
|
|
hash = Col [col].shared3.hash ;
|
|
ASSERT (hash <= n_col) ;
|
|
|
|
/* === Get the first column in this hash bucket ===================== */
|
|
|
|
head_column = head [hash] ;
|
|
if (head_column > EMPTY)
|
|
{
|
|
first_col = Col [head_column].shared3.headhash ;
|
|
}
|
|
else
|
|
{
|
|
first_col = - (head_column + 2) ;
|
|
}
|
|
|
|
/* === Consider each column in the hash bucket ====================== */
|
|
|
|
for (super_c = first_col ; super_c != EMPTY ;
|
|
super_c = Col [super_c].shared4.hash_next)
|
|
{
|
|
ASSERT (COL_IS_ALIVE (super_c)) ;
|
|
ASSERT (Col [super_c].shared3.hash == hash) ;
|
|
length = Col [super_c].length ;
|
|
|
|
/* prev_c is the column preceding column c in the hash bucket */
|
|
prev_c = super_c ;
|
|
|
|
/* === Compare super_c with all columns after it ================ */
|
|
|
|
for (c = Col [super_c].shared4.hash_next ;
|
|
c != EMPTY ; c = Col [c].shared4.hash_next)
|
|
{
|
|
ASSERT (c != super_c) ;
|
|
ASSERT (COL_IS_ALIVE (c)) ;
|
|
ASSERT (Col [c].shared3.hash == hash) ;
|
|
|
|
/* not identical if lengths or scores are different */
|
|
if (Col [c].length != length ||
|
|
Col [c].shared2.score != Col [super_c].shared2.score)
|
|
{
|
|
prev_c = c ;
|
|
continue ;
|
|
}
|
|
|
|
/* compare the two columns */
|
|
cp1 = &A [Col [super_c].start] ;
|
|
cp2 = &A [Col [c].start] ;
|
|
|
|
for (i = 0 ; i < length ; i++)
|
|
{
|
|
/* the columns are "clean" (no dead rows) */
|
|
ASSERT (ROW_IS_ALIVE (*cp1)) ;
|
|
ASSERT (ROW_IS_ALIVE (*cp2)) ;
|
|
/* row indices will same order for both supercols, */
|
|
/* no gather scatter nessasary */
|
|
if (*cp1++ != *cp2++)
|
|
{
|
|
break ;
|
|
}
|
|
}
|
|
|
|
/* the two columns are different if the for-loop "broke" */
|
|
if (i != length)
|
|
{
|
|
prev_c = c ;
|
|
continue ;
|
|
}
|
|
|
|
/* === Got it! two columns are identical =================== */
|
|
|
|
ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;
|
|
|
|
Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
|
|
Col [c].shared1.parent = super_c ;
|
|
KILL_NON_PRINCIPAL_COL (c) ;
|
|
/* order c later, in order_children() */
|
|
Col [c].shared2.order = EMPTY ;
|
|
/* remove c from hash bucket */
|
|
Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
|
|
}
|
|
}
|
|
|
|
/* === Empty this hash bucket ======================================= */
|
|
|
|
if (head_column > EMPTY)
|
|
{
|
|
/* corresponding degree list "hash" is not empty */
|
|
Col [head_column].shared3.headhash = EMPTY ;
|
|
}
|
|
else
|
|
{
|
|
/* corresponding degree list "hash" is empty */
|
|
head [hash] = EMPTY ;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === garbage_collection =================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Defragments and compacts columns and rows in the workspace A. Used when
|
|
all avaliable memory has been used while performing row merging. Returns
|
|
the index of the first free position in A, after garbage collection. The
|
|
time taken by this routine is linear is the size of the array A, which is
|
|
itself linear in the number of nonzeros in the input matrix.
|
|
Not user-callable.
|
|
*/
|
|
|
|
PRIVATE Int garbage_collection /* returns the new value of pfree */
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
Int n_row, /* number of rows */
|
|
Int n_col, /* number of columns */
|
|
Colamd_Row Row [], /* row info */
|
|
Colamd_Col Col [], /* column info */
|
|
Int A [], /* A [0 ... Alen-1] holds the matrix */
|
|
Int *pfree /* &A [0] ... pfree is in use */
|
|
)
|
|
{
|
|
/* === Local variables ================================================== */
|
|
|
|
Int *psrc ; /* source pointer */
|
|
Int *pdest ; /* destination pointer */
|
|
Int j ; /* counter */
|
|
Int r ; /* a row index */
|
|
Int c ; /* a column index */
|
|
Int length ; /* length of a row or column */
|
|
|
|
#ifndef NDEBUG
|
|
Int debug_rows ;
|
|
DEBUG2 (("Defrag..\n")) ;
|
|
for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ;
|
|
debug_rows = 0 ;
|
|
#endif /* NDEBUG */
|
|
|
|
/* === Defragment the columns =========================================== */
|
|
|
|
pdest = &A[0] ;
|
|
for (c = 0 ; c < n_col ; c++)
|
|
{
|
|
if (COL_IS_ALIVE (c))
|
|
{
|
|
psrc = &A [Col [c].start] ;
|
|
|
|
/* move and compact the column */
|
|
ASSERT (pdest <= psrc) ;
|
|
Col [c].start = (Int) (pdest - &A [0]) ;
|
|
length = Col [c].length ;
|
|
for (j = 0 ; j < length ; j++)
|
|
{
|
|
r = *psrc++ ;
|
|
if (ROW_IS_ALIVE (r))
|
|
{
|
|
*pdest++ = r ;
|
|
}
|
|
}
|
|
Col [c].length = (Int) (pdest - &A [Col [c].start]) ;
|
|
}
|
|
}
|
|
|
|
/* === Prepare to defragment the rows =================================== */
|
|
|
|
for (r = 0 ; r < n_row ; r++)
|
|
{
|
|
if (ROW_IS_DEAD (r) || (Row [r].length == 0))
|
|
{
|
|
/* This row is already dead, or is of zero length. Cannot compact
|
|
* a row of zero length, so kill it. NOTE: in the current version,
|
|
* there are no zero-length live rows. Kill the row (for the first
|
|
* time, or again) just to be safe. */
|
|
KILL_ROW (r) ;
|
|
}
|
|
else
|
|
{
|
|
/* save first column index in Row [r].shared2.first_column */
|
|
psrc = &A [Row [r].start] ;
|
|
Row [r].shared2.first_column = *psrc ;
|
|
ASSERT (ROW_IS_ALIVE (r)) ;
|
|
/* flag the start of the row with the one's complement of row */
|
|
*psrc = ONES_COMPLEMENT (r) ;
|
|
#ifndef NDEBUG
|
|
debug_rows++ ;
|
|
#endif /* NDEBUG */
|
|
}
|
|
}
|
|
|
|
/* === Defragment the rows ============================================== */
|
|
|
|
psrc = pdest ;
|
|
while (psrc < pfree)
|
|
{
|
|
/* find a negative number ... the start of a row */
|
|
if (*psrc++ < 0)
|
|
{
|
|
psrc-- ;
|
|
/* get the row index */
|
|
r = ONES_COMPLEMENT (*psrc) ;
|
|
ASSERT (r >= 0 && r < n_row) ;
|
|
/* restore first column index */
|
|
*psrc = Row [r].shared2.first_column ;
|
|
ASSERT (ROW_IS_ALIVE (r)) ;
|
|
ASSERT (Row [r].length > 0) ;
|
|
/* move and compact the row */
|
|
ASSERT (pdest <= psrc) ;
|
|
Row [r].start = (Int) (pdest - &A [0]) ;
|
|
length = Row [r].length ;
|
|
for (j = 0 ; j < length ; j++)
|
|
{
|
|
c = *psrc++ ;
|
|
if (COL_IS_ALIVE (c))
|
|
{
|
|
*pdest++ = c ;
|
|
}
|
|
}
|
|
Row [r].length = (Int) (pdest - &A [Row [r].start]) ;
|
|
ASSERT (Row [r].length > 0) ;
|
|
#ifndef NDEBUG
|
|
debug_rows-- ;
|
|
#endif /* NDEBUG */
|
|
}
|
|
}
|
|
/* ensure we found all the rows */
|
|
ASSERT (debug_rows == 0) ;
|
|
|
|
/* === Return the new value of pfree ==================================== */
|
|
|
|
return ((Int) (pdest - &A [0])) ;
|
|
}
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === clear_mark =========================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Clears the Row [].shared2.mark array, and returns the new tag_mark.
|
|
Return value is the new tag_mark. Not user-callable.
|
|
*/
|
|
|
|
PRIVATE Int clear_mark /* return the new value for tag_mark */
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
Int tag_mark, /* new value of tag_mark */
|
|
Int max_mark, /* max allowed value of tag_mark */
|
|
|
|
Int n_row, /* number of rows in A */
|
|
Colamd_Row Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */
|
|
)
|
|
{
|
|
/* === Local variables ================================================== */
|
|
|
|
Int r ;
|
|
|
|
if (tag_mark <= 0 || tag_mark >= max_mark)
|
|
{
|
|
for (r = 0 ; r < n_row ; r++)
|
|
{
|
|
if (ROW_IS_ALIVE (r))
|
|
{
|
|
Row [r].shared2.mark = 0 ;
|
|
}
|
|
}
|
|
tag_mark = 1 ;
|
|
}
|
|
|
|
return (tag_mark) ;
|
|
}
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === print_report ========================================================= */
|
|
/* ========================================================================== */
|
|
|
|
PRIVATE void print_report
|
|
(
|
|
char *method,
|
|
Int stats [COLAMD_STATS]
|
|
)
|
|
{
|
|
|
|
Int i1, i2, i3 ;
|
|
|
|
PRINTF (("\n%s version %d.%d, %s: ", method,
|
|
COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE)) ;
|
|
|
|
if (!stats)
|
|
{
|
|
PRINTF (("No statistics available.\n")) ;
|
|
return ;
|
|
}
|
|
|
|
i1 = stats [COLAMD_INFO1] ;
|
|
i2 = stats [COLAMD_INFO2] ;
|
|
i3 = stats [COLAMD_INFO3] ;
|
|
|
|
if (stats [COLAMD_STATUS] >= 0)
|
|
{
|
|
PRINTF (("OK. ")) ;
|
|
}
|
|
else
|
|
{
|
|
PRINTF (("ERROR. ")) ;
|
|
}
|
|
|
|
switch (stats [COLAMD_STATUS])
|
|
{
|
|
|
|
case COLAMD_OK_BUT_JUMBLED:
|
|
|
|
PRINTF(("Matrix has unsorted or duplicate row indices.\n")) ;
|
|
|
|
PRINTF(("%s: number of duplicate or out-of-order row indices: %d\n",
|
|
method, i3)) ;
|
|
|
|
PRINTF(("%s: last seen duplicate or out-of-order row index: %d\n",
|
|
method, INDEX (i2))) ;
|
|
|
|
PRINTF(("%s: last seen in column: %d",
|
|
method, INDEX (i1))) ;
|
|
|
|
/* no break - fall through to next case instead */
|
|
|
|
case COLAMD_OK:
|
|
|
|
PRINTF(("\n")) ;
|
|
|
|
PRINTF(("%s: number of dense or empty rows ignored: %d\n",
|
|
method, stats [COLAMD_DENSE_ROW])) ;
|
|
|
|
PRINTF(("%s: number of dense or empty columns ignored: %d\n",
|
|
method, stats [COLAMD_DENSE_COL])) ;
|
|
|
|
PRINTF(("%s: number of garbage collections performed: %d\n",
|
|
method, stats [COLAMD_DEFRAG_COUNT])) ;
|
|
break ;
|
|
|
|
case COLAMD_ERROR_A_not_present:
|
|
|
|
PRINTF(("Array A (row indices of matrix) not present.\n")) ;
|
|
break ;
|
|
|
|
case COLAMD_ERROR_p_not_present:
|
|
|
|
PRINTF(("Array p (column pointers for matrix) not present.\n")) ;
|
|
break ;
|
|
|
|
case COLAMD_ERROR_nrow_negative:
|
|
|
|
PRINTF(("Invalid number of rows (%d).\n", i1)) ;
|
|
break ;
|
|
|
|
case COLAMD_ERROR_ncol_negative:
|
|
|
|
PRINTF(("Invalid number of columns (%d).\n", i1)) ;
|
|
break ;
|
|
|
|
case COLAMD_ERROR_nnz_negative:
|
|
|
|
PRINTF(("Invalid number of nonzero entries (%d).\n", i1)) ;
|
|
break ;
|
|
|
|
case COLAMD_ERROR_p0_nonzero:
|
|
|
|
PRINTF(("Invalid column pointer, p [0] = %d, must be zero.\n", i1));
|
|
break ;
|
|
|
|
case COLAMD_ERROR_A_too_small:
|
|
|
|
PRINTF(("Array A too small.\n")) ;
|
|
PRINTF((" Need Alen >= %d, but given only Alen = %d.\n",
|
|
i1, i2)) ;
|
|
break ;
|
|
|
|
case COLAMD_ERROR_col_length_negative:
|
|
|
|
PRINTF
|
|
(("Column %d has a negative number of nonzero entries (%d).\n",
|
|
INDEX (i1), i2)) ;
|
|
break ;
|
|
|
|
case COLAMD_ERROR_row_index_out_of_bounds:
|
|
|
|
PRINTF
|
|
(("Row index (row %d) out of bounds (%d to %d) in column %d.\n",
|
|
INDEX (i2), INDEX (0), INDEX (i3-1), INDEX (i1))) ;
|
|
break ;
|
|
|
|
case COLAMD_ERROR_out_of_memory:
|
|
|
|
PRINTF(("Out of memory.\n")) ;
|
|
break ;
|
|
|
|
/* v2.4: internal-error case deleted */
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === colamd debugging routines ============================================ */
|
|
/* ========================================================================== */
|
|
|
|
/* When debugging is disabled, the remainder of this file is ignored. */
|
|
|
|
#ifndef NDEBUG
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === debug_structures ===================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
At this point, all empty rows and columns are dead. All live columns
|
|
are "clean" (containing no dead rows) and simplicial (no supercolumns
|
|
yet). Rows may contain dead columns, but all live rows contain at
|
|
least one live column.
|
|
*/
|
|
|
|
PRIVATE void debug_structures
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
Int n_row,
|
|
Int n_col,
|
|
Colamd_Row Row [],
|
|
Colamd_Col Col [],
|
|
Int A [],
|
|
Int n_col2
|
|
)
|
|
{
|
|
/* === Local variables ================================================== */
|
|
|
|
Int i ;
|
|
Int c ;
|
|
Int *cp ;
|
|
Int *cp_end ;
|
|
Int len ;
|
|
Int score ;
|
|
Int r ;
|
|
Int *rp ;
|
|
Int *rp_end ;
|
|
Int deg ;
|
|
|
|
/* === Check A, Row, and Col ============================================ */
|
|
|
|
for (c = 0 ; c < n_col ; c++)
|
|
{
|
|
if (COL_IS_ALIVE (c))
|
|
{
|
|
len = Col [c].length ;
|
|
score = Col [c].shared2.score ;
|
|
DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ;
|
|
ASSERT (len > 0) ;
|
|
ASSERT (score >= 0) ;
|
|
ASSERT (Col [c].shared1.thickness == 1) ;
|
|
cp = &A [Col [c].start] ;
|
|
cp_end = cp + len ;
|
|
while (cp < cp_end)
|
|
{
|
|
r = *cp++ ;
|
|
ASSERT (ROW_IS_ALIVE (r)) ;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
i = Col [c].shared2.order ;
|
|
ASSERT (i >= n_col2 && i < n_col) ;
|
|
}
|
|
}
|
|
|
|
for (r = 0 ; r < n_row ; r++)
|
|
{
|
|
if (ROW_IS_ALIVE (r))
|
|
{
|
|
i = 0 ;
|
|
len = Row [r].length ;
|
|
deg = Row [r].shared1.degree ;
|
|
ASSERT (len > 0) ;
|
|
ASSERT (deg > 0) ;
|
|
rp = &A [Row [r].start] ;
|
|
rp_end = rp + len ;
|
|
while (rp < rp_end)
|
|
{
|
|
c = *rp++ ;
|
|
if (COL_IS_ALIVE (c))
|
|
{
|
|
i++ ;
|
|
}
|
|
}
|
|
ASSERT (i > 0) ;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === debug_deg_lists ====================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Prints the contents of the degree lists. Counts the number of columns
|
|
in the degree list and compares it to the total it should have. Also
|
|
checks the row degrees.
|
|
*/
|
|
|
|
PRIVATE void debug_deg_lists
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
Int n_row,
|
|
Int n_col,
|
|
Colamd_Row Row [],
|
|
Colamd_Col Col [],
|
|
Int head [],
|
|
Int min_score,
|
|
Int should,
|
|
Int max_deg
|
|
)
|
|
{
|
|
/* === Local variables ================================================== */
|
|
|
|
Int deg ;
|
|
Int col ;
|
|
Int have ;
|
|
Int row ;
|
|
|
|
/* === Check the degree lists =========================================== */
|
|
|
|
if (n_col > 10000 && colamd_debug <= 0)
|
|
{
|
|
return ;
|
|
}
|
|
have = 0 ;
|
|
DEBUG4 (("Degree lists: %d\n", min_score)) ;
|
|
for (deg = 0 ; deg <= n_col ; deg++)
|
|
{
|
|
col = head [deg] ;
|
|
if (col == EMPTY)
|
|
{
|
|
continue ;
|
|
}
|
|
DEBUG4 (("%d:", deg)) ;
|
|
while (col != EMPTY)
|
|
{
|
|
DEBUG4 ((" %d", col)) ;
|
|
have += Col [col].shared1.thickness ;
|
|
ASSERT (COL_IS_ALIVE (col)) ;
|
|
col = Col [col].shared4.degree_next ;
|
|
}
|
|
DEBUG4 (("\n")) ;
|
|
}
|
|
DEBUG4 (("should %d have %d\n", should, have)) ;
|
|
ASSERT (should == have) ;
|
|
|
|
/* === Check the row degrees ============================================ */
|
|
|
|
if (n_row > 10000 && colamd_debug <= 0)
|
|
{
|
|
return ;
|
|
}
|
|
for (row = 0 ; row < n_row ; row++)
|
|
{
|
|
if (ROW_IS_ALIVE (row))
|
|
{
|
|
ASSERT (Row [row].shared1.degree <= max_deg) ;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === debug_mark =========================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Ensures that the tag_mark is less that the maximum and also ensures that
|
|
each entry in the mark array is less than the tag mark.
|
|
*/
|
|
|
|
PRIVATE void debug_mark
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
Int n_row,
|
|
Colamd_Row Row [],
|
|
Int tag_mark,
|
|
Int max_mark
|
|
)
|
|
{
|
|
/* === Local variables ================================================== */
|
|
|
|
Int r ;
|
|
|
|
/* === Check the Row marks ============================================== */
|
|
|
|
ASSERT (tag_mark > 0 && tag_mark <= max_mark) ;
|
|
if (n_row > 10000 && colamd_debug <= 0)
|
|
{
|
|
return ;
|
|
}
|
|
for (r = 0 ; r < n_row ; r++)
|
|
{
|
|
ASSERT (Row [r].shared2.mark < tag_mark) ;
|
|
}
|
|
}
|
|
|
|
|
|
/* ========================================================================== */
|
|
/* === debug_matrix ========================================================= */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Prints out the contents of the columns and the rows.
|
|
*/
|
|
|
|
PRIVATE void debug_matrix
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
Int n_row,
|
|
Int n_col,
|
|
Colamd_Row Row [],
|
|
Colamd_Col Col [],
|
|
Int A []
|
|
)
|
|
{
|
|
/* === Local variables ================================================== */
|
|
|
|
Int r ;
|
|
Int c ;
|
|
Int *rp ;
|
|
Int *rp_end ;
|
|
Int *cp ;
|
|
Int *cp_end ;
|
|
|
|
/* === Dump the rows and columns of the matrix ========================== */
|
|
|
|
if (colamd_debug < 3)
|
|
{
|
|
return ;
|
|
}
|
|
DEBUG3 (("DUMP MATRIX:\n")) ;
|
|
for (r = 0 ; r < n_row ; r++)
|
|
{
|
|
DEBUG3 (("Row %d alive? %d\n", r, ROW_IS_ALIVE (r))) ;
|
|
if (ROW_IS_DEAD (r))
|
|
{
|
|
continue ;
|
|
}
|
|
DEBUG3 (("start %d length %d degree %d\n",
|
|
Row [r].start, Row [r].length, Row [r].shared1.degree)) ;
|
|
rp = &A [Row [r].start] ;
|
|
rp_end = rp + Row [r].length ;
|
|
while (rp < rp_end)
|
|
{
|
|
c = *rp++ ;
|
|
DEBUG4 ((" %d col %d\n", COL_IS_ALIVE (c), c)) ;
|
|
}
|
|
}
|
|
|
|
for (c = 0 ; c < n_col ; c++)
|
|
{
|
|
DEBUG3 (("Col %d alive? %d\n", c, COL_IS_ALIVE (c))) ;
|
|
if (COL_IS_DEAD (c))
|
|
{
|
|
continue ;
|
|
}
|
|
DEBUG3 (("start %d length %d shared1 %d shared2 %d\n",
|
|
Col [c].start, Col [c].length,
|
|
Col [c].shared1.thickness, Col [c].shared2.score)) ;
|
|
cp = &A [Col [c].start] ;
|
|
cp_end = cp + Col [c].length ;
|
|
while (cp < cp_end)
|
|
{
|
|
r = *cp++ ;
|
|
DEBUG4 ((" %d row %d\n", ROW_IS_ALIVE (r), r)) ;
|
|
}
|
|
}
|
|
}
|
|
|
|
PRIVATE void colamd_get_debug
|
|
(
|
|
char *method
|
|
)
|
|
{
|
|
FILE *f ;
|
|
colamd_debug = 0 ; /* no debug printing */
|
|
f = fopen ("debug", "r") ;
|
|
if (f == (FILE *) NULL)
|
|
{
|
|
colamd_debug = 0 ;
|
|
}
|
|
else
|
|
{
|
|
fscanf (f, "%d", &colamd_debug) ;
|
|
fclose (f) ;
|
|
}
|
|
DEBUG0 (("%s: debug version, D = %d (THIS WILL BE SLOW!)\n",
|
|
method, colamd_debug)) ;
|
|
}
|
|
|
|
#endif /* NDEBUG */
|