You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1310 lines
						
					
					
						
							40 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							1310 lines
						
					
					
						
							40 KiB
						
					
					
				| /** | |
|   @file | |
|  | |
|   @ingroup cudd | |
|  | |
|   @brief Procedure to subset the given %BDD by choosing the heavier | |
|   branches. | |
|  | |
|   @see cuddSubsetSP.c | |
|  | |
|   @author Kavita Ravi | |
|  | |
|   @copyright@parblock | |
|   Copyright (c) 1995-2015, Regents of the University of Colorado | |
|  | |
|   All rights reserved. | |
|  | |
|   Redistribution and use in source and binary forms, with or without | |
|   modification, are permitted provided that the following conditions | |
|   are met: | |
|  | |
|   Redistributions of source code must retain the above copyright | |
|   notice, this list of conditions and the following disclaimer. | |
|  | |
|   Redistributions in binary form must reproduce the above copyright | |
|   notice, this list of conditions and the following disclaimer in the | |
|   documentation and/or other materials provided with the distribution. | |
|  | |
|   Neither the name of the University of Colorado nor the names of its | |
|   contributors may be used to endorse or promote products derived from | |
|   this software without specific prior written permission. | |
|  | |
|   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
|   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
|   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
|   FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |
|   COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |
|   INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | |
|   BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
|   LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
|   CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
|   LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | |
|   ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
|   POSSIBILITY OF SUCH DAMAGE. | |
|   @endparblock | |
|  | |
| */ | |
| 
 | |
| #ifdef __STDC__ | |
| #include <float.h> | |
| #else | |
| #define DBL_MAX_EXP 1024 | |
| #endif | |
| #include "util.h" | |
| #include "cuddInt.h" | |
|  | |
| /*---------------------------------------------------------------------------*/ | |
| /* Constant declarations                                                     */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| #define	DEFAULT_PAGE_SIZE 2048 | |
| #define	DEFAULT_NODE_DATA_PAGE_SIZE 1024 | |
| #define INITIAL_PAGES 128 | |
|  | |
| #undef max | |
|  | |
| /*---------------------------------------------------------------------------*/ | |
| /* Type declarations                                                         */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| typedef struct NodeData NodeData_t; | |
| 
 | |
| typedef struct SubsetInfo SubsetInfo_t; | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Stucture declarations                                                     */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| /** | |
|  * @brief Data structure to store the information on each node. | |
|  | |
|  * @details It keeps the number of minterms represented by the DAG | |
|  * rooted at this node in terms of the number of variables specified | |
|  * by the user, number of nodes in this DAG and the number of nodes of | |
|  * its child with lesser number of minterms that are not shared by the | |
|  * child with more minterms. | |
|  */ | |
| struct NodeData { | |
|     double *mintermPointer; | |
|     int *nodesPointer; | |
|     int *lightChildNodesPointer; | |
| }; | |
| 
 | |
| /** | |
|  * @brief Miscellaneous info. | |
|  */ | |
| struct SubsetInfo { | |
|     DdNode	*zero, *one; /**< constant functions */ | |
|     double	**mintermPages;	/**< pointers to the pages */ | |
|     int		**nodePages; /**< pointers to the pages */ | |
|     int		**lightNodePages; /**< pointers to the pages */ | |
|     double	*currentMintermPage; /**< pointer to the current page */ | |
|     double	max; /**< to store the 2^n value of the number of variables */ | |
|     int		*currentNodePage; /**< pointer to the current page */ | |
|     int		*currentLightNodePage; /**< pointer to the current page */ | |
|     int		pageIndex; /**< index to next element */ | |
|     int		page; /**< index to current page */ | |
|     int		pageSize; /**< page size */ | |
|     int         maxPages; /**< number of page pointers */ | |
|     NodeData_t	*currentNodeDataPage; /**< pointer to the current page */ | |
|     int		nodeDataPage; /**< index to next element */ | |
|     int		nodeDataPageIndex; /**< index to next element */ | |
|     NodeData_t	**nodeDataPages; /**< index to current page */ | |
|     int		nodeDataPageSize; /**< page size */ | |
|     int         maxNodeDataPages; /**< number of page pointers */ | |
|     int memOut; | |
| #ifdef DEBUG | |
|     int		num_calls; | |
| #endif | |
| }; | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Variable declarations                                                     */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Macro declarations                                                        */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| /** \cond */ | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Static function prototypes                                                */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| static void ResizeNodeDataPages (SubsetInfo_t * info); | |
| static void ResizeCountMintermPages (SubsetInfo_t * info); | |
| static void ResizeCountNodePages (SubsetInfo_t * info); | |
| static double SubsetCountMintermAux (DdNode *node, double max, st_table *table, SubsetInfo_t * info); | |
| static st_table * SubsetCountMinterm (DdNode *node, int nvars, SubsetInfo_t * info); | |
| static int SubsetCountNodesAux (DdNode *node, st_table *table, double max, SubsetInfo_t * info); | |
| static int SubsetCountNodes (DdNode *node, st_table *table, int nvars, SubsetInfo_t * info); | |
| static void StoreNodes (st_table *storeTable, DdManager *dd, DdNode *node); | |
| static DdNode * BuildSubsetBdd (DdManager *dd, DdNode *node, int *size, st_table *visitedTable, int threshold, st_table *storeTable, st_table *approxTable, SubsetInfo_t * info); | |
| 
 | |
| /** \endcond */ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Definition of exported functions                                          */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| /** | |
|   @brief Extracts a dense subset from a %BDD with the heavy branch | |
|   heuristic. | |
|  | |
|   @details This procedure builds a subset by throwing away one of the | |
|   children of each node, starting from the root, until the result is | |
|   small enough. The child that is eliminated from the result is the | |
|   one that contributes the fewer minterms.  The parameter numVars is | |
|   the maximum number of variables to be used in minterm calculation | |
|   and node count calculation.  The optimal number should be as close | |
|   as possible to the size of the support of f.  However, it is safe to | |
|   pass the value returned by Cudd_ReadSize for numVars when the number | |
|   of variables is under 1023.  If numVars is larger than 1023, it will | |
|   overflow. If a 0 parameter is passed then the procedure will compute | |
|   a value which will avoid overflow but will cause underflow with 2046 | |
|   variables or more. | |
|  | |
|   @return a pointer to the %BDD of the subset if successful. NULL if | |
|   the procedure runs out of memory. | |
|  | |
|   @sideeffect None | |
|  | |
|   @see Cudd_SubsetShortPaths Cudd_SupersetHeavyBranch Cudd_ReadSize | |
|  | |
| */ | |
| DdNode * | |
| Cudd_SubsetHeavyBranch( | |
|   DdManager * dd /**< manager */, | |
|   DdNode * f /**< function to be subset */, | |
|   int  numVars /**< number of variables in the support of f */, | |
|   int  threshold /**< maximum number of nodes in the subset */) | |
| { | |
|     DdNode *subset; | |
| 
 | |
|     do { | |
| 	dd->reordered = 0; | |
| 	subset = cuddSubsetHeavyBranch(dd, f, numVars, threshold); | |
|     } while (dd->reordered == 1); | |
|     if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) { | |
|         dd->timeoutHandler(dd, dd->tohArg); | |
|     } | |
| 
 | |
|     return(subset); | |
| 
 | |
| } /* end of Cudd_SubsetHeavyBranch */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Extracts a dense superset from a %BDD with the heavy branch | |
|   heuristic. | |
|  | |
|   @details The procedure is identical to the subset procedure except | |
|   for the fact that it receives the complement of the given | |
|   function. Extracting the subset of the complement function is | |
|   equivalent to extracting the superset of the function. This | |
|   procedure builds a superset by throwing away one of the children of | |
|   each node starting from the root of the complement function, until | |
|   the result is small enough. The child that is eliminated from the | |
|   result is the one that contributes the fewer minterms.  The | |
|   parameter numVars is the maximum number of variables to be used in | |
|   minterm calculation and node count calculation.  The optimal number | |
|   should be as close as possible to the size of the support of f. | |
|   However, it is safe to pass the value returned by Cudd_ReadSize for | |
|   numVars when the number of variables is under 1023.  If numVars is | |
|   larger than 1023, it will overflow. If a 0 parameter is passed then | |
|   the procedure will compute a value which will avoid overflow but | |
|   will cause underflow with 2046 variables or more. | |
|  | |
|   @return a pointer to the %BDD of the superset if successful. NULL if | |
|   intermediate result causes the procedure to run out of memory. | |
|  | |
|   @sideeffect None | |
|  | |
|   @see Cudd_SubsetHeavyBranch Cudd_SupersetShortPaths Cudd_ReadSize | |
|  | |
| */ | |
| DdNode * | |
| Cudd_SupersetHeavyBranch( | |
|   DdManager * dd /**< manager */, | |
|   DdNode * f /**< function to be superset */, | |
|   int  numVars /**< number of variables in the support of f */, | |
|   int  threshold /**< maximum number of nodes in the superset */) | |
| { | |
|     DdNode *subset, *g; | |
| 
 | |
|     g = Cudd_Not(f); | |
|     do { | |
| 	dd->reordered = 0; | |
| 	subset = cuddSubsetHeavyBranch(dd, g, numVars, threshold); | |
|     } while (dd->reordered == 1); | |
|     if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) { | |
|         dd->timeoutHandler(dd, dd->tohArg); | |
|     } | |
| 
 | |
|     return(Cudd_NotCond(subset, (subset != NULL))); | |
| 
 | |
| } /* end of Cudd_SupersetHeavyBranch */ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Definition of internal functions                                          */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| 
 | |
| /** | |
|   @brief The main procedure that returns a subset by choosing the heavier | |
|   branch in the %BDD. | |
|  | |
|   @details Here a subset %BDD is built by throwing away one of the | |
|   children. Starting at root, annotate each node with the number of | |
|   minterms (in terms of the total number of variables specified - | |
|   numVars), number of nodes taken by the DAG rooted at this node and | |
|   number of additional nodes taken by the child that has the lesser | |
|   minterms. The child with the lower number of minterms is thrown away | |
|   and a dyanmic count of the nodes of the subset is kept. Once the | |
|   threshold is reached the subset is returned to the calling | |
|   procedure. | |
|  | |
|   @sideeffect None | |
|  | |
|   @see Cudd_SubsetHeavyBranch | |
|  | |
| */ | |
| DdNode * | |
| cuddSubsetHeavyBranch( | |
|   DdManager * dd /**< %DD manager */, | |
|   DdNode * f /**< current %DD */, | |
|   int  numVars /**< maximum number of variables */, | |
|   int  threshold /**< threshold size for the subset */) | |
| { | |
| 
 | |
|     int i, *size; | |
|     st_table *visitedTable; | |
|     int numNodes; | |
|     NodeData_t *currNodeQual; | |
|     DdNode *subset; | |
|     st_table *storeTable, *approxTable; | |
|     DdNode *key, *value; | |
|     st_generator *stGen; | |
|     SubsetInfo_t info; | |
| 
 | |
|     if (f == NULL) { | |
| 	fprintf(dd->err, "Cannot subset, nil object\n"); | |
| 	dd->errorCode = CUDD_INVALID_ARG; | |
| 	return(NULL); | |
|     } | |
| 
 | |
|     /* If user does not know numVars value, set it to the maximum | |
|      * exponent that the pow function can take. The -1 is due to the | |
|      * discrepancy in the value that pow takes and the value that | |
|      * log gives. | |
|      */ | |
|     if (numVars == 0) { | |
| 	/* set default value */ | |
| 	numVars = DBL_MAX_EXP - 1; | |
|     } | |
| 
 | |
|     if (Cudd_IsConstantInt(f)) { | |
| 	return(f); | |
|     } | |
| 
 | |
|     info.one  = Cudd_ReadOne(dd); | |
|     info.zero = Cudd_Not(info.one); | |
|     info.mintermPages = NULL; | |
|     info.nodePages = info.lightNodePages = NULL; | |
|     info.currentMintermPage = NULL; | |
|     info.max = pow(2.0, (double)numVars); | |
|     info.currentNodePage = info.currentLightNodePage = NULL; | |
|     info.pageIndex = info.page = 0; | |
|     info.pageSize = DEFAULT_PAGE_SIZE; | |
|     info.maxPages = 0; | |
|     info.currentNodeDataPage = NULL; | |
|     info.nodeDataPage = info.nodeDataPageIndex = 0; | |
|     info.nodeDataPages = NULL; | |
|     info.nodeDataPageSize = DEFAULT_NODE_DATA_PAGE_SIZE; | |
|     info.maxNodeDataPages = 0; | |
|     info.memOut = 0; | |
| #ifdef DEBUG | |
|     info.num_calls = 0; | |
| #endif | |
|  | |
|     /* Create visited table where structures for node data are allocated and | |
|        stored in a st_table */ | |
|     visitedTable = SubsetCountMinterm(f, numVars, &info); | |
|     if ((visitedTable == NULL) || info.memOut) { | |
| 	(void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); | |
| 	dd->errorCode = CUDD_MEMORY_OUT; | |
| 	return(0); | |
|     } | |
|     numNodes = SubsetCountNodes(f, visitedTable, numVars, &info); | |
|     if (info.memOut) { | |
| 	(void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); | |
| 	dd->errorCode = CUDD_MEMORY_OUT; | |
| 	return(0); | |
|     } | |
| 
 | |
|     if (st_lookup(visitedTable, f, (void **) &currNodeQual) == 0) { | |
| 	fprintf(dd->err, | |
| 		"Something is wrong, ought to be node quality table\n"); | |
| 	dd->errorCode = CUDD_INTERNAL_ERROR; | |
|     } | |
| 
 | |
|     size = ALLOC(int, 1); | |
|     if (size == NULL) { | |
| 	dd->errorCode = CUDD_MEMORY_OUT; | |
| 	return(NULL); | |
|     } | |
|     *size = numNodes; | |
| 
 | |
|     /* table to store nodes being created. */ | |
|     storeTable = st_init_table(st_ptrcmp, st_ptrhash); | |
|     /* insert the constant */ | |
|     cuddRef(info.one); | |
|     if (st_insert(storeTable, Cudd_ReadOne(dd), NULL) == | |
| 	ST_OUT_OF_MEM) { | |
| 	fprintf(dd->out, "Something wrong, st_table insert failed\n"); | |
|     } | |
|     /* table to store approximations of nodes */ | |
|     approxTable = st_init_table(st_ptrcmp, st_ptrhash); | |
|     subset = (DdNode *)BuildSubsetBdd(dd, f, size, visitedTable, threshold, | |
| 				      storeTable, approxTable, &info); | |
|     if (subset != NULL) { | |
| 	cuddRef(subset); | |
|     } | |
| 
 | |
|     if (info.memOut) { | |
|         dd->errorCode = CUDD_MEMORY_OUT; | |
|         dd->reordered = 0; | |
|     } | |
| 
 | |
|     stGen = st_init_gen(approxTable); | |
|     if (stGen == NULL) { | |
| 	st_free_table(approxTable); | |
| 	return(NULL); | |
|     } | |
|     while(st_gen(stGen, (void **) &key, (void **) &value)) { | |
| 	Cudd_RecursiveDeref(dd, value); | |
|     } | |
|     st_free_gen(stGen); stGen = NULL; | |
|     st_free_table(approxTable); | |
| 
 | |
|     stGen = st_init_gen(storeTable); | |
|     if (stGen == NULL) { | |
| 	st_free_table(storeTable); | |
| 	return(NULL); | |
|     } | |
|     while(st_gen(stGen, (void **) &key, (void **) &value)) { | |
| 	Cudd_RecursiveDeref(dd, key); | |
|     } | |
|     st_free_gen(stGen); stGen = NULL; | |
|     st_free_table(storeTable); | |
| 
 | |
|     for (i = 0; i <= info.page; i++) { | |
| 	FREE(info.mintermPages[i]); | |
|     } | |
|     FREE(info.mintermPages); | |
|     for (i = 0; i <= info.page; i++) { | |
| 	FREE(info.nodePages[i]); | |
|     } | |
|     FREE(info.nodePages); | |
|     for (i = 0; i <= info.page; i++) { | |
| 	FREE(info.lightNodePages[i]); | |
|     } | |
|     FREE(info.lightNodePages); | |
|     for (i = 0; i <= info.nodeDataPage; i++) { | |
| 	FREE(info.nodeDataPages[i]); | |
|     } | |
|     FREE(info.nodeDataPages); | |
|     st_free_table(visitedTable); | |
|     FREE(size); | |
| #if 0 | |
|     (void) Cudd_DebugCheck(dd); | |
|     (void) Cudd_CheckKeys(dd); | |
| #endif | |
|  | |
|     if (subset != NULL) { | |
| #ifdef DD_DEBUG | |
|       if (!Cudd_bddLeq(dd, subset, f)) { | |
| 	    fprintf(dd->err, "Wrong subset\n"); | |
| 	    dd->errorCode = CUDD_INTERNAL_ERROR; | |
| 	    return(NULL); | |
|       } | |
| #endif | |
| 	cuddDeref(subset); | |
|     } | |
|     return(subset); | |
| 
 | |
| } /* end of cuddSubsetHeavyBranch */ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Definition of static functions                                            */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Resize the number of pages allocated to store the node data. | |
|  | |
|   @details The procedure moves the counter to the next page when the | |
|   end of the page is reached and allocates new pages when necessary. | |
|  | |
|   @sideeffect Changes the size of pages, page, page index, maximum | |
|   number of pages freeing stuff in case of memory out.  | |
|  | |
| */ | |
| static void | |
| ResizeNodeDataPages(SubsetInfo_t * info) | |
| { | |
|     int i; | |
|     NodeData_t **newNodeDataPages; | |
| 
 | |
|     info->nodeDataPage++; | |
|     /* If the current page index is larger than the number of pages | |
|      * allocated, allocate a new page array. Page numbers are incremented by | |
|      * INITIAL_PAGES | |
|      */ | |
|     if (info->nodeDataPage == info->maxNodeDataPages) { | |
| 	newNodeDataPages = ALLOC(NodeData_t *, info->maxNodeDataPages + INITIAL_PAGES); | |
| 	if (newNodeDataPages == NULL) { | |
| 	    for (i = 0; i < info->nodeDataPage; i++) FREE(info->nodeDataPages[i]); | |
| 	    FREE(info->nodeDataPages); | |
| 	    info->memOut = 1; | |
| 	    return; | |
| 	} else { | |
| 	    for (i = 0; i < info->maxNodeDataPages; i++) { | |
| 		newNodeDataPages[i] = info->nodeDataPages[i]; | |
| 	    } | |
| 	    /* Increase total page count */ | |
| 	    info->maxNodeDataPages += INITIAL_PAGES; | |
| 	    FREE(info->nodeDataPages); | |
| 	    info->nodeDataPages = newNodeDataPages; | |
| 	} | |
|     } | |
|     /* Allocate a new page */ | |
|     info->currentNodeDataPage = info->nodeDataPages[info->nodeDataPage] = | |
| 	ALLOC(NodeData_t ,info->nodeDataPageSize); | |
|     if (info->currentNodeDataPage == NULL) { | |
| 	for (i = 0; i < info->nodeDataPage; i++) FREE(info->nodeDataPages[i]); | |
| 	FREE(info->nodeDataPages); | |
| 	info->memOut = 1; | |
| 	return; | |
|     } | |
|     /* reset page index */ | |
|     info->nodeDataPageIndex = 0; | |
|     return; | |
| 
 | |
| } /* end of ResizeNodeDataPages */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Resize the number of pages allocated to store the minterm | |
|   counts.  | |
|  | |
|   @details The procedure  moves the counter to the next page when the | |
|   end of the page is reached and allocates new pages when necessary. | |
|  | |
|   @sideeffect Changes the size of minterm pages, page, page index, maximum | |
|   number of pages freeing stuff in case of memory out.  | |
|  | |
| */ | |
| static void | |
| ResizeCountMintermPages(SubsetInfo_t * info) | |
| { | |
|     int i; | |
|     double **newMintermPages; | |
| 
 | |
|     info->page++; | |
|     /* If the current page index is larger than the number of pages | |
|      * allocated, allocate a new page array. Page numbers are incremented by | |
|      * INITIAL_PAGES | |
|      */ | |
|     if (info->page == info->maxPages) { | |
| 	newMintermPages = ALLOC(double *, info->maxPages + INITIAL_PAGES); | |
| 	if (newMintermPages == NULL) { | |
| 	    for (i = 0; i < info->page; i++) FREE(info->mintermPages[i]); | |
| 	    FREE(info->mintermPages); | |
| 	    info->memOut = 1; | |
| 	    return; | |
| 	} else { | |
| 	    for (i = 0; i < info->maxPages; i++) { | |
| 		newMintermPages[i] = info->mintermPages[i]; | |
| 	    } | |
| 	    /* Increase total page count */ | |
| 	    info->maxPages += INITIAL_PAGES; | |
| 	    FREE(info->mintermPages); | |
| 	    info->mintermPages = newMintermPages; | |
| 	} | |
|     } | |
|     /* Allocate a new page */ | |
|     info->currentMintermPage = info->mintermPages[info->page] = ALLOC(double,info->pageSize); | |
|     if (info->currentMintermPage == NULL) { | |
| 	for (i = 0; i < info->page; i++) FREE(info->mintermPages[i]); | |
| 	FREE(info->mintermPages); | |
| 	info->memOut = 1; | |
| 	return; | |
|     } | |
|     /* reset page index */ | |
|     info->pageIndex = 0; | |
|     return; | |
| 
 | |
| } /* end of ResizeCountMintermPages */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Resize the number of pages allocated to store the node counts. | |
|  | |
|   @details The procedure moves the counter to the next page when the | |
|   end of the page is reached and allocates new pages when necessary. | |
|  | |
|   @sideeffect Changes the size of pages, page, page index, maximum | |
|   number of pages freeing stuff in case of memory out. | |
|  | |
| */ | |
| static void | |
| ResizeCountNodePages(SubsetInfo_t * info) | |
| { | |
|     int i; | |
|     int **newNodePages; | |
| 
 | |
|     info->page++; | |
| 
 | |
|     /* If the current page index is larger than the number of pages | |
|      * allocated, allocate a new page array. The number of pages is incremented | |
|      * by INITIAL_PAGES. | |
|      */ | |
|     if (info->page == info->maxPages) { | |
| 	newNodePages = ALLOC(int *, info->maxPages + INITIAL_PAGES); | |
| 	if (newNodePages == NULL) { | |
| 	    for (i = 0; i < info->page; i++) FREE(info->nodePages[i]); | |
| 	    FREE(info->nodePages); | |
| 	    for (i = 0; i < info->page; i++) FREE(info->lightNodePages[i]); | |
| 	    FREE(info->lightNodePages); | |
| 	    info->memOut = 1; | |
| 	    return; | |
| 	} else { | |
| 	    for (i = 0; i < info->maxPages; i++) { | |
| 		newNodePages[i] = info->nodePages[i]; | |
| 	    } | |
| 	    FREE(info->nodePages); | |
| 	    info->nodePages = newNodePages; | |
| 	} | |
| 
 | |
| 	newNodePages = ALLOC(int *, info->maxPages + INITIAL_PAGES); | |
| 	if (newNodePages == NULL) { | |
| 	    for (i = 0; i < info->page; i++) FREE(info->nodePages[i]); | |
| 	    FREE(info->nodePages); | |
| 	    for (i = 0; i < info->page; i++) FREE(info->lightNodePages[i]); | |
| 	    FREE(info->lightNodePages); | |
| 	    info->memOut = 1; | |
| 	    return; | |
| 	} else { | |
| 	    for (i = 0; i < info->maxPages; i++) { | |
| 		newNodePages[i] = info->lightNodePages[i]; | |
| 	    } | |
| 	    FREE(info->lightNodePages); | |
| 	    info->lightNodePages = newNodePages; | |
| 	} | |
| 	/* Increase total page count */ | |
| 	info->maxPages += INITIAL_PAGES; | |
|     } | |
|     /* Allocate a new page */ | |
|     info->currentNodePage = info->nodePages[info->page] = ALLOC(int,info->pageSize); | |
|     if (info->currentNodePage == NULL) { | |
| 	for (i = 0; i < info->page; i++) FREE(info->nodePages[i]); | |
| 	FREE(info->nodePages); | |
| 	for (i = 0; i < info->page; i++) FREE(info->lightNodePages[i]); | |
| 	FREE(info->lightNodePages); | |
| 	info->memOut = 1; | |
| 	return; | |
|     } | |
|     /* Allocate a new page */ | |
|     info->currentLightNodePage = info->lightNodePages[info->page] | |
|         = ALLOC(int,info->pageSize); | |
|     if (info->currentLightNodePage == NULL) { | |
| 	for (i = 0; i <= info->page; i++) FREE(info->nodePages[i]); | |
| 	FREE(info->nodePages); | |
| 	for (i = 0; i < info->page; i++) FREE(info->lightNodePages[i]); | |
| 	FREE(info->lightNodePages); | |
| 	info->memOut = 1; | |
| 	return; | |
|     } | |
|     /* reset page index */ | |
|     info->pageIndex = 0; | |
|     return; | |
| 
 | |
| } /* end of ResizeCountNodePages */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Recursively counts minterms of each node in the DAG. | |
|  | |
|   @details Similar to the cuddCountMintermAux which recursively counts | |
|   the number of minterms for the dag rooted at each node in terms of | |
|   the total number of variables (max). This procedure creates the node | |
|   data structure and stores the minterm count as part of the node data | |
|   structure. | |
|  | |
|   @sideeffect Creates structures of type node quality and fills the st_table | |
|  | |
|   @see SubsetCountMinterm | |
|  | |
| */ | |
| static double | |
| SubsetCountMintermAux( | |
|   DdNode * node /**< function to analyze */, | |
|   double  max /**< number of minterms of constant 1 */, | |
|   st_table * table /**< visitedTable table */, | |
|   SubsetInfo_t * info /**< miscellaneous info */) | |
| { | |
| 
 | |
|     DdNode	*N,*Nv,*Nnv; /* nodes to store cofactors  */ | |
|     double	min,*pmin; /* minterm count */ | |
|     double	min1, min2; /* minterm count */ | |
|     NodeData_t *dummy; | |
|     NodeData_t *newEntry; | |
|     int i; | |
| 
 | |
| #ifdef DEBUG | |
|     info->num_calls++; | |
| #endif | |
|  | |
|     /* Constant case */ | |
|     if (Cudd_IsConstantInt(node)) { | |
| 	if (node == info->zero) { | |
| 	    return(0.0); | |
| 	} else { | |
| 	    return(max); | |
| 	} | |
|     } else { | |
| 
 | |
| 	/* check if entry for this node exists */ | |
|         if (st_lookup(table, node, (void **) &dummy)) { | |
| 	    min = *(dummy->mintermPointer); | |
| 	    return(min); | |
| 	} | |
| 
 | |
| 	/* Make the node regular to extract cofactors */ | |
| 	N = Cudd_Regular(node); | |
| 
 | |
| 	/* store the cofactors */ | |
| 	Nv = Cudd_T(N); | |
| 	Nnv = Cudd_E(N); | |
| 
 | |
| 	Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); | |
| 	Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); | |
| 
 | |
| 	min1 =  SubsetCountMintermAux(Nv, max,table,info)/2.0; | |
| 	if (info->memOut) return(0.0); | |
| 	min2 =  SubsetCountMintermAux(Nnv,max,table,info)/2.0; | |
| 	if (info->memOut) return(0.0); | |
| 	min = (min1+min2); | |
| 
 | |
| 	/* if page index is at the bottom, then create a new page */ | |
| 	if (info->pageIndex == info->pageSize) ResizeCountMintermPages(info); | |
| 	if (info->memOut) { | |
| 	    for (i = 0; i <= info->nodeDataPage; i++) FREE(info->nodeDataPages[i]); | |
| 	    FREE(info->nodeDataPages); | |
| 	    st_free_table(table); | |
| 	    return(0.0); | |
| 	} | |
| 
 | |
| 	/* point to the correct location in the page */ | |
| 	pmin = info->currentMintermPage + info->pageIndex; | |
| 	info->pageIndex++; | |
| 
 | |
| 	/* store the minterm count of this node in the page */ | |
| 	*pmin = min; | |
| 
 | |
| 	/* Note I allocate the struct here. Freeing taken care of later */ | |
| 	if (info->nodeDataPageIndex == info->nodeDataPageSize) | |
|             ResizeNodeDataPages(info); | |
| 	if (info->memOut) { | |
| 	    for (i = 0; i <= info->page; i++) FREE(info->mintermPages[i]); | |
| 	    FREE(info->mintermPages); | |
| 	    st_free_table(table); | |
| 	    return(0.0); | |
| 	} | |
| 
 | |
| 	newEntry = info->currentNodeDataPage + info->nodeDataPageIndex; | |
| 	info->nodeDataPageIndex++; | |
| 
 | |
| 	/* points to the correct location in the page */ | |
| 	newEntry->mintermPointer = pmin; | |
| 	/* initialize this field of the Node Quality structure */ | |
| 	newEntry->nodesPointer = NULL; | |
| 
 | |
| 	/* insert entry for the node in the table */ | |
| 	if (st_insert(table,node, newEntry) == ST_OUT_OF_MEM) { | |
| 	    info->memOut = 1; | |
| 	    for (i = 0; i <= info->page; i++) FREE(info->mintermPages[i]); | |
| 	    FREE(info->mintermPages); | |
| 	    for (i = 0; i <= info->nodeDataPage; i++) FREE(info->nodeDataPages[i]); | |
| 	    FREE(info->nodeDataPages); | |
| 	    st_free_table(table); | |
| 	    return(0.0); | |
| 	} | |
| 	return(min); | |
|     } | |
| 
 | |
| } /* end of SubsetCountMintermAux */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Counts minterms of each node in the DAG | |
|  | |
|   @details Similar to the Cudd_CountMinterm procedure except this | |
|   returns the minterm count for all the nodes in the bdd in an | |
|   st_table. | |
|  | |
|   @sideeffect none | |
|  | |
|   @see SubsetCountMintermAux | |
|  | |
| */ | |
| static st_table * | |
| SubsetCountMinterm( | |
|   DdNode * node /**< function to be analyzed */, | |
|   int nvars /**< number of variables node depends on */, | |
|   SubsetInfo_t * info /**< miscellaneous info */) | |
| { | |
|     st_table	*table; | |
|     int i; | |
| 
 | |
| 
 | |
| #ifdef DEBUG | |
|     info->num_calls = 0; | |
| #endif | |
|  | |
|     info->max = pow(2.0,(double) nvars); | |
|     table = st_init_table(st_ptrcmp,st_ptrhash); | |
|     if (table == NULL) goto OUT_OF_MEM; | |
|     info->maxPages = INITIAL_PAGES; | |
|     info->mintermPages = ALLOC(double *,info->maxPages); | |
|     if (info->mintermPages == NULL) { | |
| 	st_free_table(table); | |
| 	goto OUT_OF_MEM; | |
|     } | |
|     info->page = 0; | |
|     info->currentMintermPage = ALLOC(double,info->pageSize); | |
|     info->mintermPages[info->page] = info->currentMintermPage; | |
|     if (info->currentMintermPage == NULL) { | |
| 	FREE(info->mintermPages); | |
| 	st_free_table(table); | |
| 	goto OUT_OF_MEM; | |
|     } | |
|     info->pageIndex = 0; | |
|     info->maxNodeDataPages = INITIAL_PAGES; | |
|     info->nodeDataPages = ALLOC(NodeData_t *, info->maxNodeDataPages); | |
|     if (info->nodeDataPages == NULL) { | |
| 	for (i = 0; i <= info->page ; i++) FREE(info->mintermPages[i]); | |
| 	FREE(info->mintermPages); | |
| 	st_free_table(table); | |
| 	goto OUT_OF_MEM; | |
|     } | |
|     info->nodeDataPage = 0; | |
|     info->currentNodeDataPage = ALLOC(NodeData_t ,info->nodeDataPageSize); | |
|     info->nodeDataPages[info->nodeDataPage] = info->currentNodeDataPage; | |
|     if (info->currentNodeDataPage == NULL) { | |
| 	for (i = 0; i <= info->page ; i++) FREE(info->mintermPages[i]); | |
| 	FREE(info->mintermPages); | |
| 	FREE(info->nodeDataPages); | |
| 	st_free_table(table); | |
| 	goto OUT_OF_MEM; | |
|     } | |
|     info->nodeDataPageIndex = 0; | |
| 
 | |
|     (void) SubsetCountMintermAux(node,info->max,table,info); | |
|     if (info->memOut) goto OUT_OF_MEM; | |
|     return(table); | |
| 
 | |
| OUT_OF_MEM: | |
|     info->memOut = 1; | |
|     return(NULL); | |
| 
 | |
| } /* end of SubsetCountMinterm */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Recursively counts the number of nodes under the dag. | |
|   Also counts the number of nodes under the lighter child of | |
|   this node. | |
|  | |
|   @details Note that the same dag may be the lighter child of two | |
|   different nodes and have different counts. As with the minterm | |
|   counts, the node counts are stored in pages to be space efficient | |
|   and the address for these node counts are stored in an st_table | |
|   associated to each node. | |
|  | |
|   @sideeffect Updates the node data table with node counts | |
|  | |
|   @see SubsetCountNodes | |
|  | |
| */ | |
| static int | |
| SubsetCountNodesAux( | |
|   DdNode * node /**< current node */, | |
|   st_table * table /**< table to update node count, also serves as visited table. */, | |
|   double  max /**< maximum number of variables */, | |
|   SubsetInfo_t * info) | |
| { | |
|     int tval, eval, i; | |
|     DdNode *N, *Nv, *Nnv; | |
|     double minNv, minNnv; | |
|     NodeData_t *dummyN, *dummyNv, *dummyNnv, *dummyNBar; | |
|     int *pmin, *pminBar, *val; | |
| 
 | |
|     if ((node == NULL) || Cudd_IsConstantInt(node)) | |
| 	return(0); | |
| 
 | |
|     /* if this node has been processed do nothing */ | |
|     if (st_lookup(table, node, (void **) &dummyN) == 1) { | |
| 	val = dummyN->nodesPointer; | |
| 	if (val != NULL) | |
| 	    return(0); | |
|     } else { | |
| 	return(0); | |
|     } | |
| 
 | |
|     N  = Cudd_Regular(node); | |
|     Nv = Cudd_T(N); | |
|     Nnv = Cudd_E(N); | |
| 
 | |
|     Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); | |
|     Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); | |
| 
 | |
|     /* find the minterm counts for the THEN and ELSE branches */ | |
|     if (Cudd_IsConstantInt(Nv)) { | |
| 	if (Nv == info->zero) { | |
| 	    minNv = 0.0; | |
| 	} else { | |
| 	    minNv = max; | |
| 	} | |
|     } else { | |
| 	if (st_lookup(table, Nv, (void **) &dummyNv) == 1) | |
| 	    minNv = *(dummyNv->mintermPointer); | |
| 	else { | |
| 	    return(0); | |
| 	} | |
|     } | |
|     if (Cudd_IsConstantInt(Nnv)) { | |
| 	if (Nnv == info->zero) { | |
| 	    minNnv = 0.0; | |
| 	} else { | |
| 	    minNnv = max; | |
| 	} | |
|     } else { | |
| 	if (st_lookup(table, Nnv, (void **) &dummyNnv) == 1) { | |
| 	    minNnv = *(dummyNnv->mintermPointer); | |
| 	} | |
| 	else { | |
| 	    return(0); | |
| 	} | |
|     } | |
| 
 | |
| 
 | |
|     /* recur based on which has larger minterm, */ | |
|     if (minNv >= minNnv) { | |
| 	tval = SubsetCountNodesAux(Nv, table, max, info); | |
| 	if (info->memOut) return(0); | |
| 	eval = SubsetCountNodesAux(Nnv, table, max, info); | |
| 	if (info->memOut) return(0); | |
| 
 | |
| 	/* store the node count of the lighter child. */ | |
| 	if (info->pageIndex == info->pageSize) ResizeCountNodePages(info); | |
| 	if (info->memOut) { | |
| 	    for (i = 0; i <= info->page; i++) FREE(info->mintermPages[i]); | |
| 	    FREE(info->mintermPages); | |
| 	    for (i = 0; i <= info->nodeDataPage; i++) FREE(info->nodeDataPages[i]); | |
| 	    FREE(info->nodeDataPages); | |
| 	    st_free_table(table); | |
| 	    return(0); | |
| 	} | |
| 	pmin = info->currentLightNodePage + info->pageIndex; | |
| 	*pmin = eval; /* Here the ELSE child is lighter */ | |
| 	dummyN->lightChildNodesPointer = pmin; | |
| 
 | |
|     } else { | |
| 	eval = SubsetCountNodesAux(Nnv, table, max, info); | |
| 	if (info->memOut) return(0); | |
| 	tval = SubsetCountNodesAux(Nv, table, max, info); | |
| 	if (info->memOut) return(0); | |
| 
 | |
| 	/* store the node count of the lighter child. */ | |
| 	if (info->pageIndex == info->pageSize) ResizeCountNodePages(info); | |
| 	if (info->memOut) { | |
| 	    for (i = 0; i <= info->page; i++) FREE(info->mintermPages[i]); | |
| 	    FREE(info->mintermPages); | |
| 	    for (i = 0; i <= info->nodeDataPage; i++) FREE(info->nodeDataPages[i]); | |
| 	    FREE(info->nodeDataPages); | |
| 	    st_free_table(table); | |
| 	    return(0); | |
| 	} | |
| 	pmin = info->currentLightNodePage + info->pageIndex; | |
| 	*pmin = tval; /* Here the THEN child is lighter */ | |
| 	dummyN->lightChildNodesPointer = pmin; | |
| 
 | |
|     } | |
|     /* updating the page index for node count storage. */ | |
|     pmin = info->currentNodePage + info->pageIndex; | |
|     *pmin = tval + eval + 1; | |
|     dummyN->nodesPointer = pmin; | |
| 
 | |
|     /* pageIndex is parallel page index for count_nodes and count_lightNodes */ | |
|     info->pageIndex++; | |
| 
 | |
|     /* if this node has been reached first, it belongs to a heavier | |
|        branch. Its complement will be reached later on a lighter branch. | |
|        Hence the complement has zero node count. */ | |
| 
 | |
|     if (st_lookup(table, Cudd_Not(node), (void **) &dummyNBar) == 1)  { | |
| 	if (info->pageIndex == info->pageSize) ResizeCountNodePages(info); | |
| 	if (info->memOut) { | |
| 	    for (i = 0; i < info->page; i++) FREE(info->mintermPages[i]); | |
| 	    FREE(info->mintermPages); | |
| 	    for (i = 0; i < info->nodeDataPage; i++) FREE(info->nodeDataPages[i]); | |
| 	    FREE(info->nodeDataPages); | |
| 	    st_free_table(table); | |
| 	    return(0); | |
| 	} | |
| 	pminBar = info->currentLightNodePage + info->pageIndex; | |
| 	*pminBar = 0; | |
| 	dummyNBar->lightChildNodesPointer = pminBar; | |
| 	/* The lighter child has less nodes than the parent. | |
| 	 * So if parent 0 then lighter child zero | |
| 	 */ | |
| 	if (info->pageIndex == info->pageSize) ResizeCountNodePages(info); | |
| 	if (info->memOut) { | |
| 	    for (i = 0; i < info->page; i++) FREE(info->mintermPages[i]); | |
| 	    FREE(info->mintermPages); | |
| 	    for (i = 0; i < info->nodeDataPage; i++) FREE(info->nodeDataPages[i]); | |
| 	    FREE(info->nodeDataPages); | |
| 	    st_free_table(table); | |
| 	    return(0); | |
| 	} | |
| 	pminBar = info->currentNodePage + info->pageIndex; | |
| 	*pminBar = 0; | |
| 	dummyNBar->nodesPointer = pminBar ; /* maybe should point to zero */ | |
| 
 | |
| 	info->pageIndex++; | |
|     } | |
|     return(*pmin); | |
| } /*end of SubsetCountNodesAux */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Counts the nodes under the current node and its lighter child. | |
|  | |
|   @details Calls a recursive procedure to count the number of nodes of | |
|   a DAG rooted at a particular node and the number of nodes taken by | |
|   its lighter child. | |
|  | |
|   @sideeffect None | |
|  | |
|   @see SubsetCountNodesAux | |
|  | |
| */ | |
| static int | |
| SubsetCountNodes( | |
|   DdNode * node /**< function to be analyzed */, | |
|   st_table * table /**< node quality table */, | |
|   int  nvars /**< number of variables node depends on */, | |
|   SubsetInfo_t * info /**< miscellaneous info */) | |
| { | |
|     int	num; | |
|     int i; | |
| 
 | |
| #ifdef DEBUG | |
|     info->num_calls = 0; | |
| #endif | |
|  | |
|     info->max = pow(2.0,(double) nvars); | |
|     info->maxPages = INITIAL_PAGES; | |
|     info->nodePages = ALLOC(int *, info->maxPages); | |
|     if (info->nodePages == NULL)  { | |
| 	goto OUT_OF_MEM; | |
|     } | |
| 
 | |
|     info->lightNodePages = ALLOC(int *, info->maxPages); | |
|     if (info->lightNodePages == NULL) { | |
| 	for (i = 0; i <= info->page; i++) FREE(info->mintermPages[i]); | |
| 	FREE(info->mintermPages); | |
| 	for (i = 0; i <= info->nodeDataPage; i++) FREE(info->nodeDataPages[i]); | |
| 	FREE(info->nodeDataPages); | |
| 	FREE(info->nodePages); | |
| 	goto OUT_OF_MEM; | |
|     } | |
| 
 | |
|     info->page = 0; | |
|     info->currentNodePage = info->nodePages[info->page] = | |
|         ALLOC(int,info->pageSize); | |
|     if (info->currentNodePage == NULL) { | |
| 	for (i = 0; i <= info->page; i++) FREE(info->mintermPages[i]); | |
| 	FREE(info->mintermPages); | |
| 	for (i = 0; i <= info->nodeDataPage; i++) FREE(info->nodeDataPages[i]); | |
| 	FREE(info->nodeDataPages); | |
| 	FREE(info->lightNodePages); | |
| 	FREE(info->nodePages); | |
| 	goto OUT_OF_MEM; | |
|     } | |
| 
 | |
|     info->currentLightNodePage = info->lightNodePages[info->page] = | |
|         ALLOC(int,info->pageSize); | |
|     if (info->currentLightNodePage == NULL) { | |
| 	for (i = 0; i <= info->page; i++) FREE(info->mintermPages[i]); | |
| 	FREE(info->mintermPages); | |
| 	for (i = 0; i <= info->nodeDataPage; i++) FREE(info->nodeDataPages[i]); | |
| 	FREE(info->nodeDataPages); | |
| 	FREE(info->currentNodePage); | |
| 	FREE(info->lightNodePages); | |
| 	FREE(info->nodePages); | |
| 	goto OUT_OF_MEM; | |
|     } | |
| 
 | |
|     info->pageIndex = 0; | |
|     num = SubsetCountNodesAux(node,table,info->max,info); | |
|     if (info->memOut) goto OUT_OF_MEM; | |
|     return(num); | |
| 
 | |
| OUT_OF_MEM: | |
|     info->memOut = 1; | |
|     return(0); | |
| 
 | |
| } /* end of SubsetCountNodes */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Procedure to recursively store nodes that are retained in the subset. | |
|  | |
|   @sideeffect None | |
|  | |
|   @see StoreNodes | |
|  | |
| */ | |
| static void | |
| StoreNodes( | |
|   st_table * storeTable, | |
|   DdManager * dd, | |
|   DdNode * node) | |
| { | |
|     DdNode *N, *Nt, *Ne; | |
|     if (Cudd_IsConstantInt(dd)) { | |
| 	return; | |
|     } | |
|     N = Cudd_Regular(node); | |
|     if (st_is_member(storeTable, N)) { | |
| 	return; | |
|     } | |
|     cuddRef(N); | |
|     if (st_insert(storeTable, N, NULL) == ST_OUT_OF_MEM) { | |
| 	fprintf(dd->err,"Something wrong, st_table insert failed\n"); | |
|     } | |
| 
 | |
|     Nt = Cudd_T(N); | |
|     Ne = Cudd_E(N); | |
| 
 | |
|     StoreNodes(storeTable, dd, Nt); | |
|     StoreNodes(storeTable, dd, Ne); | |
|     return; | |
| 
 | |
| } | |
| 
 | |
| 
 | |
| /** | |
|   @brief Builds the subset %BDD using the heavy branch method. | |
|  | |
|   @details The procedure carries out the building of the subset %BDD | |
|   starting at the root. Using the three different counts labelling each node, | |
|   the procedure chooses the heavier branch starting from the root and keeps | |
|   track of the number of nodes it discards at each step, thus keeping count | |
|   of the size of the subset %BDD dynamically. Once the threshold is satisfied, | |
|   the procedure then calls ITE to build the %BDD. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static DdNode * | |
| BuildSubsetBdd( | |
|   DdManager * dd /**< %DD manager */, | |
|   DdNode * node /**< current node */, | |
|   int * size /**< current size of the subset */, | |
|   st_table * visitedTable /**< visited table storing all node data */, | |
|   int threshold /**< subsetting threshold */, | |
|   st_table * storeTable /**< store table */, | |
|   st_table * approxTable /**< approximation table */, | |
|   SubsetInfo_t * info /**< miscellaneous info */) | |
| { | |
| 
 | |
|     DdNode *Nv, *Nnv, *N, *topv, *neW; | |
|     double minNv, minNnv; | |
|     NodeData_t *currNodeQual; | |
|     NodeData_t *currNodeQualT; | |
|     NodeData_t *currNodeQualE; | |
|     DdNode *ThenBranch, *ElseBranch; | |
|     int topid; | |
|     void *dummy; | |
| 
 | |
| #ifdef DEBUG | |
|     info->num_calls++; | |
| #endif | |
|     /*If the size of the subset is below the threshold, dont do | |
|       anything. */ | |
|     if ((*size) <= threshold) { | |
|       /* store nodes below this, so we can recombine if possible */ | |
|       StoreNodes(storeTable, dd, node); | |
|       return(node); | |
|     } | |
| 
 | |
|     if (Cudd_IsConstantInt(node)) | |
| 	return(node); | |
| 
 | |
|     /* Look up minterm count for this node. */ | |
|     if (!st_lookup(visitedTable, node, (void **) &currNodeQual)) { | |
| 	fprintf(dd->err, | |
| 		"Something is wrong, ought to be in node quality table\n"); | |
|     } | |
| 
 | |
|     /* Get children. */ | |
|     N = Cudd_Regular(node); | |
|     Nv = Cudd_T(N); | |
|     Nnv = Cudd_E(N); | |
| 
 | |
|     /* complement if necessary */ | |
|     Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); | |
|     Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); | |
| 
 | |
|     if (!Cudd_IsConstantInt(Nv)) { | |
| 	/* find out minterms and nodes contributed by then child */ | |
| 	if (!st_lookup(visitedTable, Nv, (void **) &currNodeQualT)) { | |
| 		fprintf(dd->out,"Something wrong, couldnt find nodes in node quality table\n"); | |
| 		dd->errorCode = CUDD_INTERNAL_ERROR; | |
| 		return(NULL); | |
| 	    } | |
| 	else { | |
| 	    minNv = *(((NodeData_t *)currNodeQualT)->mintermPointer); | |
| 	} | |
|     } else { | |
| 	if (Nv == info->zero) { | |
| 	    minNv = 0; | |
| 	} else  { | |
| 	    minNv = info->max; | |
| 	} | |
|     } | |
|     if (!Cudd_IsConstantInt(Nnv)) { | |
| 	/* find out minterms and nodes contributed by else child */ | |
| 	if (!st_lookup(visitedTable, Nnv, (void **) &currNodeQualE)) { | |
| 	    fprintf(dd->out,"Something wrong, couldnt find nodes in node quality table\n"); | |
| 	    dd->errorCode = CUDD_INTERNAL_ERROR; | |
| 	    return(NULL); | |
| 	} else { | |
| 	    minNnv = *(((NodeData_t *)currNodeQualE)->mintermPointer); | |
| 	} | |
|     } else { | |
| 	if (Nnv == info->zero) { | |
| 	    minNnv = 0; | |
| 	} else { | |
| 	    minNnv = info->max; | |
| 	} | |
|     } | |
| 
 | |
|     /* keep track of size of subset by subtracting the number of | |
|      * differential nodes contributed by lighter child | |
|      */ | |
|     *size = (*(size)) - (int)*(currNodeQual->lightChildNodesPointer); | |
|     if (minNv >= minNnv) { /*SubsetCountNodesAux procedure takes | |
| 			     the Then branch in case of a tie */ | |
| 
 | |
| 	/* recur with the Then branch */ | |
| 	ThenBranch = (DdNode *)BuildSubsetBdd(dd, Nv, size, visitedTable, | |
|                                               threshold, storeTable, | |
|                                               approxTable, info); | |
| 	if (ThenBranch == NULL) { | |
| 	    return(NULL); | |
| 	} | |
| 	cuddRef(ThenBranch); | |
| 	/* The Else branch is either a node that already exists in the | |
| 	 * subset, or one whose approximation has been computed, or | |
| 	 * Zero. | |
| 	 */ | |
| 	if (st_lookup(storeTable, Cudd_Regular(Nnv), &dummy)) { | |
|             ElseBranch = Nnv; | |
|             cuddRef(ElseBranch); | |
| 	} else { | |
|             if (st_lookup(approxTable, Nnv, &dummy)) { | |
|                 ElseBranch = (DdNode *)dummy; | |
|                 cuddRef(ElseBranch); | |
|             } else { | |
|                 ElseBranch = info->zero; | |
|                 cuddRef(ElseBranch); | |
|             } | |
| 	} | |
| 
 | |
|     } | |
|     else { | |
| 	/* recur with the Else branch */ | |
| 	ElseBranch = (DdNode *)BuildSubsetBdd(dd, Nnv, size, visitedTable, | |
|                                               threshold, storeTable, | |
|                                               approxTable, info); | |
| 	if (ElseBranch == NULL) { | |
| 	    return(NULL); | |
| 	} | |
| 	cuddRef(ElseBranch); | |
| 	/* The Then branch is either a node that already exists in the | |
| 	 * subset, or one whose approximation has been computed, or | |
| 	 * Zero. | |
| 	 */ | |
| 	if (st_lookup(storeTable, Cudd_Regular(Nv), &dummy)) { | |
|             ThenBranch = Nv; | |
|             cuddRef(ThenBranch); | |
| 	} else { | |
|             if (st_lookup(approxTable, Nv, &dummy)) { | |
|                 ThenBranch = (DdNode *)dummy; | |
|                 cuddRef(ThenBranch); | |
|             } else { | |
|                 ThenBranch = info->zero; | |
|                 cuddRef(ThenBranch); | |
|             } | |
| 	} | |
|     } | |
| 
 | |
|     /* construct the Bdd with the top variable and the two children */ | |
|     topid = Cudd_NodeReadIndex(N); | |
|     topv = Cudd_ReadVars(dd, topid); | |
|     cuddRef(topv); | |
|     neW =  cuddBddIteRecur(dd, topv, ThenBranch, ElseBranch); | |
|     if (neW != NULL) { | |
|       cuddRef(neW); | |
|     } | |
|     Cudd_RecursiveDeref(dd, topv); | |
|     Cudd_RecursiveDeref(dd, ThenBranch); | |
|     Cudd_RecursiveDeref(dd, ElseBranch); | |
| 
 | |
| 
 | |
|     if (neW == NULL) | |
| 	return(NULL); | |
|     else { | |
| 	/* store this node in the store table */ | |
| 	if (!st_lookup(storeTable, Cudd_Regular(neW), &dummy)) { | |
|             cuddRef(neW); | |
|             if (st_insert(storeTable, Cudd_Regular(neW), NULL) == | |
|                 ST_OUT_OF_MEM) | |
|                 return (NULL); | |
| 	} | |
| 	/* store the approximation for this node */ | |
| 	if (N !=  Cudd_Regular(neW)) { | |
| 	    if (st_lookup(approxTable, node, &dummy)) { | |
| 		fprintf(dd->err, "This node should not be in the approximated table\n"); | |
| 	    } else { | |
| 		cuddRef(neW); | |
| 		if (st_insert(approxTable, node, neW) == | |
|                     ST_OUT_OF_MEM) | |
| 		    return(NULL); | |
| 	    } | |
| 	} | |
| 	cuddDeref(neW); | |
| 	return(neW); | |
|     } | |
| } /* end of BuildSubsetBdd */
 |