You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							2096 lines
						
					
					
						
							56 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							2096 lines
						
					
					
						
							56 KiB
						
					
					
				| /** | |
|   @file | |
|  | |
|   @ingroup cudd | |
|  | |
|   @brief Functions for group sifting. | |
|  | |
|   @author Shipra Panda, Fabio Somenzi | |
|  | |
|   @copyright@parblock | |
|   Copyright (c) 1995-2015, Regents of the University of Colorado | |
|  | |
|   All rights reserved. | |
|  | |
|   Redistribution and use in source and binary forms, with or without | |
|   modification, are permitted provided that the following conditions | |
|   are met: | |
|  | |
|   Redistributions of source code must retain the above copyright | |
|   notice, this list of conditions and the following disclaimer. | |
|  | |
|   Redistributions in binary form must reproduce the above copyright | |
|   notice, this list of conditions and the following disclaimer in the | |
|   documentation and/or other materials provided with the distribution. | |
|  | |
|   Neither the name of the University of Colorado nor the names of its | |
|   contributors may be used to endorse or promote products derived from | |
|   this software without specific prior written permission. | |
|  | |
|   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
|   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
|   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
|   FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |
|   COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |
|   INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | |
|   BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
|   LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
|   CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
|   LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | |
|   ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
|   POSSIBILITY OF SUCH DAMAGE. | |
|   @endparblock | |
|  | |
| */ | |
| 
 | |
| #include "util.h" | |
| #include "mtrInt.h" | |
| #include "cuddInt.h" | |
|  | |
| /*---------------------------------------------------------------------------*/ | |
| /* Constant declarations                                                     */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| /* Constants for lazy sifting */ | |
| #define	DD_NORMAL_SIFT	0 | |
| #define	DD_LAZY_SIFT	1 | |
|  | |
| /* Constants for sifting up and down */ | |
| #define	DD_SIFT_DOWN	0 | |
| #define	DD_SIFT_UP	1 | |
|  | |
| /*---------------------------------------------------------------------------*/ | |
| /* Stucture declarations                                                     */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Type declarations                                                         */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| typedef int (*DD_CHKFP)(DdManager *, int, int); | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Variable declarations                                                     */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Macro declarations                                                        */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| /** \cond */ | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Static function prototypes                                                */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| static int ddTreeSiftingAux (DdManager *table, MtrNode *treenode, Cudd_ReorderingType method); | |
| #ifdef DD_STATS | |
| static int ddCountInternalMtrNodes (DdManager *table, MtrNode *treenode); | |
| #endif | |
| static int ddReorderChildren (DdManager *table, MtrNode *treenode, Cudd_ReorderingType method); | |
| static void ddFindNodeHiLo (DdManager *table, MtrNode *treenode, int *lower, int *upper); | |
| static int ddUniqueCompareGroup (void const *ptrX, void const *ptrY); | |
| static int ddGroupSifting (DdManager *table, int lower, int upper, DD_CHKFP checkFunction, int lazyFlag); | |
| static void ddCreateGroup (DdManager *table, int x, int y); | |
| static int ddGroupSiftingAux (DdManager *table, int x, int xLow, int xHigh, DD_CHKFP checkFunction, int lazyFlag); | |
| static int ddGroupSiftingUp (DdManager *table, int y, int xLow, DD_CHKFP checkFunction, Move **moves); | |
| static int ddGroupSiftingDown (DdManager *table, int x, int xHigh, DD_CHKFP checkFunction, Move **moves); | |
| static int ddGroupMove (DdManager *table, int x, int y, Move **moves); | |
| static int ddGroupMoveBackward (DdManager *table, int x, int y); | |
| static int ddGroupSiftingBackward (DdManager *table, Move *moves, int size, int upFlag, int lazyFlag); | |
| static void ddMergeGroups (DdManager *table, MtrNode *treenode, int low, int high); | |
| static void ddDissolveGroup (DdManager *table, int x, int y); | |
| static int ddNoCheck (DdManager *table, int x, int y); | |
| static int ddSecDiffCheck (DdManager *table, int x, int y); | |
| static int ddExtSymmCheck (DdManager *table, int x, int y); | |
| static int ddVarGroupCheck (DdManager * table, int x, int y); | |
| static int ddSetVarHandled (DdManager *dd, int index); | |
| static int ddResetVarHandled (DdManager *dd, int index); | |
| static int ddIsVarHandled (DdManager *dd, int index); | |
| 
 | |
| /** \endcond */ | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Definition of exported functions                                          */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Creates a new variable group. | |
|  | |
|   @details The group starts at variable low and contains size | |
|   variables. The parameter low is the index of the first variable. If | |
|   the variable already exists, its current position in the order is | |
|   known to the manager. If the variable does not exist yet, the | |
|   position is assumed to be the same as the index.  The group tree is | |
|   created if it does not exist yet. | |
|  | |
|   @return a pointer to the group if successful; NULL otherwise. | |
|  | |
|   @sideeffect The variable tree is changed. | |
|  | |
|   @see Cudd_MakeZddTreeNode | |
|  | |
| */ | |
| MtrNode * | |
| Cudd_MakeTreeNode( | |
|   DdManager * dd /**< manager */, | |
|   unsigned int  low /**< index of the first group variable */, | |
|   unsigned int  size /**< number of variables in the group */, | |
|   unsigned int  type /**< MTR_DEFAULT or MTR_FIXED */) | |
| { | |
|     MtrNode *group; | |
|     MtrNode *tree; | |
|     unsigned int level; | |
| 
 | |
|     /* If the variable does not exist yet, the position is assumed to be | |
|     ** the same as the index. Therefore, applications that rely on | |
|     ** Cudd_bddNewVarAtLevel or Cudd_addNewVarAtLevel to create new | |
|     ** variables have to create the variables before they group them. | |
|     */ | |
|     level = (low < (unsigned int) dd->size) ? (unsigned int) dd->perm[low] : low; | |
| 
 | |
|     if (level + size - 1> (int) MTR_MAXHIGH) | |
| 	return(NULL); | |
| 
 | |
|     /* If the tree does not exist yet, create it. */ | |
|     tree = dd->tree; | |
|     if (tree == NULL) { | |
| 	dd->tree = tree = Mtr_InitGroupTree(0, dd->size); | |
| 	if (tree == NULL) | |
| 	    return(NULL); | |
| 	tree->index = dd->size == 0 ? 0 : dd->invperm[0]; | |
|     } | |
| 
 | |
|     /* Extend the upper bound of the tree if necessary. This allows the | |
|     ** application to create groups even before the variables are created. | |
|     */ | |
|     tree->size = ddMax(tree->size, ddMax(level + size, (unsigned) dd->size)); | |
| 
 | |
|     /* Create the group. */ | |
|     group = Mtr_MakeGroup(tree, level, size, type); | |
|     if (group == NULL) | |
| 	return(NULL); | |
| 
 | |
|     /* Initialize the index field to the index of the variable currently | |
|     ** in position low. This field will be updated by the reordering | |
|     ** procedure to provide a handle to the group once it has been moved. | |
|     */ | |
|     group->index = (MtrHalfWord) low; | |
| 
 | |
|     return(group); | |
| 
 | |
| } /* end of Cudd_MakeTreeNode */ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Definition of internal functions                                          */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Tree sifting algorithm. | |
|  | |
|   @details Assumes that a tree representing a group hierarchy is | |
|   passed as a parameter.  It then reorders each group in postorder | |
|   fashion by calling ddTreeSiftingAux.  Assumes that no dead nodes are | |
|   present. | |
|  | |
|   @return 1 if successful; 0 otherwise. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| int | |
| cuddTreeSifting( | |
|   DdManager * table /**< %DD table */, | |
|   Cudd_ReorderingType method /**< reordering method for the groups of leaves */) | |
| { | |
|     int i; | |
|     int nvars; | |
|     int result; | |
|     int tempTree; | |
| 
 | |
|     /* If no tree is provided we create a temporary one in which all | |
|     ** variables are in a single group. After reordering this tree is | |
|     ** destroyed. | |
|     */ | |
|     tempTree = table->tree == NULL; | |
|     if (tempTree) { | |
| 	table->tree = Mtr_InitGroupTree(0,table->size); | |
| 	table->tree->index = table->invperm[0]; | |
|     } | |
|     nvars = table->size; | |
| 
 | |
| #ifdef DD_DEBUG | |
|     if (table->enableExtraDebug > 0 && !tempTree) | |
|         (void) fprintf(table->out,"cuddTreeSifting:"); | |
|     Mtr_PrintGroups(table->tree,table->enableExtraDebug <= 0); | |
| #endif | |
|  | |
| #ifdef DD_STATS | |
|     table->extsymmcalls = 0; | |
|     table->extsymm = 0; | |
|     table->secdiffcalls = 0; | |
|     table->secdiff = 0; | |
|     table->secdiffmisfire = 0; | |
| 
 | |
|     (void) fprintf(table->out,"\n"); | |
|     if (!tempTree) | |
| 	(void) fprintf(table->out,"#:IM_NODES  %8d: group tree nodes\n", | |
| 		       ddCountInternalMtrNodes(table,table->tree)); | |
| #endif | |
|  | |
|     /* Initialize the group of each subtable to itself. Initially | |
|     ** there are no groups. Groups are created according to the tree | |
|     ** structure in postorder fashion. | |
|     */ | |
|     for (i = 0; i < nvars; i++) | |
| 	table->subtables[i].next = i; | |
| 
 | |
| 
 | |
|     /* Reorder. */ | |
|     result = ddTreeSiftingAux(table, table->tree, method); | |
| 
 | |
| #ifdef DD_STATS		/* print stats */ | |
|     if (!tempTree && method == CUDD_REORDER_GROUP_SIFT && | |
| 	(table->groupcheck == CUDD_GROUP_CHECK7 || | |
| 	 table->groupcheck == CUDD_GROUP_CHECK5)) { | |
| 	(void) fprintf(table->out,"\nextsymmcalls = %d\n",table->extsymmcalls); | |
| 	(void) fprintf(table->out,"extsymm = %d",table->extsymm); | |
|     } | |
|     if (!tempTree && method == CUDD_REORDER_GROUP_SIFT && | |
| 	table->groupcheck == CUDD_GROUP_CHECK7) { | |
| 	(void) fprintf(table->out,"\nsecdiffcalls = %d\n",table->secdiffcalls); | |
| 	(void) fprintf(table->out,"secdiff = %d\n",table->secdiff); | |
| 	(void) fprintf(table->out,"secdiffmisfire = %d",table->secdiffmisfire); | |
|     } | |
| #endif | |
|  | |
|     if (tempTree) | |
| 	Cudd_FreeTree(table); | |
|     else | |
|       Mtr_ReorderGroups(table->tree, table->perm); | |
| 
 | |
|     return(result); | |
| 
 | |
| } /* end of cuddTreeSifting */ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Definition of static functions                                            */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Visits the group tree and reorders each group. | |
|  | |
|   @details Recursively visits the group tree and reorders each | |
|   group in postorder fashion. | |
|  | |
|   @return 1 if successful; 0 otherwise. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddTreeSiftingAux( | |
|   DdManager * table, | |
|   MtrNode * treenode, | |
|   Cudd_ReorderingType method) | |
| { | |
|     MtrNode  *auxnode; | |
|     int res; | |
|     Cudd_AggregationType saveCheck; | |
| 
 | |
| #ifdef DD_DEBUG | |
|     Mtr_PrintGroups(treenode,1); | |
| #endif | |
|  | |
|     auxnode = treenode; | |
|     while (auxnode != NULL) { | |
| 	if (auxnode->child != NULL) { | |
| 	    if (!ddTreeSiftingAux(table, auxnode->child, method)) | |
| 		return(0); | |
| 	    saveCheck = table->groupcheck; | |
| 	    table->groupcheck = CUDD_NO_CHECK; | |
| 	    if (method != CUDD_REORDER_LAZY_SIFT) | |
| 	      res = ddReorderChildren(table, auxnode, CUDD_REORDER_GROUP_SIFT); | |
| 	    else | |
| 	      res = ddReorderChildren(table, auxnode, CUDD_REORDER_LAZY_SIFT); | |
| 	    table->groupcheck = saveCheck; | |
| 
 | |
| 	    if (res == 0) | |
| 		return(0); | |
| 	} else if (auxnode->size > 1) { | |
| 	    if (!ddReorderChildren(table, auxnode, method)) | |
| 		return(0); | |
| 	} | |
| 	auxnode = auxnode->younger; | |
|     } | |
| 
 | |
|     return(1); | |
| 
 | |
| } /* end of ddTreeSiftingAux */ | |
| 
 | |
| 
 | |
| #ifdef DD_STATS | |
| /** | |
|   @brief Counts the number of internal nodes of the group tree. | |
|  | |
|   @return the count. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddCountInternalMtrNodes( | |
|   DdManager * table, | |
|   MtrNode * treenode) | |
| { | |
|     MtrNode *auxnode; | |
|     int     count,nodeCount; | |
| 
 | |
| 
 | |
|     nodeCount = 0; | |
|     auxnode = treenode; | |
|     while (auxnode != NULL) { | |
| 	if (!(MTR_TEST(auxnode,MTR_TERMINAL))) { | |
| 	    nodeCount++; | |
| 	    count = ddCountInternalMtrNodes(table,auxnode->child); | |
| 	    nodeCount += count; | |
| 	} | |
| 	auxnode = auxnode->younger; | |
|     } | |
| 
 | |
|     return(nodeCount); | |
| 
 | |
| } /* end of ddCountInternalMtrNodes */ | |
| #endif | |
|  | |
| 
 | |
| /** | |
|   @brief Reorders the children of a group tree node according to | |
|   the options. | |
|  | |
|   @details After reordering puts all the variables in the group and/or | |
|   its descendents in a single group. This allows hierarchical | |
|   reordering.  If the variables in the group do not exist yet, simply | |
|   does nothing. | |
|  | |
|   @return 1 if successful; 0 otherwise. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddReorderChildren( | |
|   DdManager * table, | |
|   MtrNode * treenode, | |
|   Cudd_ReorderingType method) | |
| { | |
|     int lower; | |
|     int upper = 0; | |
|     int result; | |
|     unsigned int initialSize; | |
| 
 | |
|     ddFindNodeHiLo(table,treenode,&lower,&upper); | |
|     /* If upper == -1 these variables do not exist yet. */ | |
|     if (upper == -1) | |
| 	return(1); | |
| 
 | |
|     if (treenode->flags == MTR_FIXED) { | |
| 	result = 1; | |
|     } else { | |
| #ifdef DD_STATS | |
| 	(void) fprintf(table->out," "); | |
| #endif | |
| 	switch (method) { | |
| 	case CUDD_REORDER_RANDOM: | |
| 	case CUDD_REORDER_RANDOM_PIVOT: | |
| 	    result = cuddSwapping(table,lower,upper,method); | |
| 	    break; | |
| 	case CUDD_REORDER_SIFT: | |
| 	    result = cuddSifting(table,lower,upper); | |
| 	    break; | |
| 	case CUDD_REORDER_SIFT_CONVERGE: | |
| 	    do { | |
| 		initialSize = table->keys - table->isolated; | |
| 		result = cuddSifting(table,lower,upper); | |
| 		if (initialSize <= table->keys - table->isolated) | |
| 		    break; | |
| #ifdef DD_STATS | |
| 		else | |
| 		    (void) fprintf(table->out,"\n"); | |
| #endif | |
| 	    } while (result != 0); | |
| 	    break; | |
| 	case CUDD_REORDER_SYMM_SIFT: | |
| 	    result = cuddSymmSifting(table,lower,upper); | |
| 	    break; | |
| 	case CUDD_REORDER_SYMM_SIFT_CONV: | |
| 	    result = cuddSymmSiftingConv(table,lower,upper); | |
| 	    break; | |
| 	case CUDD_REORDER_GROUP_SIFT: | |
| 	    if (table->groupcheck == CUDD_NO_CHECK) { | |
| 		result = ddGroupSifting(table,lower,upper,ddNoCheck, | |
| 					DD_NORMAL_SIFT); | |
| 	    } else if (table->groupcheck == CUDD_GROUP_CHECK5) { | |
| 		result = ddGroupSifting(table,lower,upper,ddExtSymmCheck, | |
| 					DD_NORMAL_SIFT); | |
| 	    } else if (table->groupcheck == CUDD_GROUP_CHECK7) { | |
| 		result = ddGroupSifting(table,lower,upper,ddExtSymmCheck, | |
| 					DD_NORMAL_SIFT); | |
| 	    } else { | |
| 		(void) fprintf(table->err, | |
| 			       "Unknown group ckecking method\n"); | |
| 		result = 0; | |
| 	    } | |
| 	    break; | |
| 	case CUDD_REORDER_GROUP_SIFT_CONV: | |
| 	    do { | |
| 		initialSize = table->keys - table->isolated; | |
| 		if (table->groupcheck == CUDD_NO_CHECK) { | |
| 		    (void) ddGroupSifting(table,lower,upper,ddNoCheck, | |
|                                           DD_NORMAL_SIFT); | |
| 		} else if (table->groupcheck == CUDD_GROUP_CHECK5) { | |
| 		    (void) ddGroupSifting(table,lower,upper,ddExtSymmCheck, | |
|                                           DD_NORMAL_SIFT); | |
| 		} else if (table->groupcheck == CUDD_GROUP_CHECK7) { | |
| 		    (void) ddGroupSifting(table,lower,upper,ddExtSymmCheck, | |
|                                           DD_NORMAL_SIFT); | |
| 		} else { | |
| 		    (void) fprintf(table->err, | |
| 				   "Unknown group ckecking method\n"); | |
| 		} | |
| #ifdef DD_STATS | |
| 		(void) fprintf(table->out,"\n"); | |
| #endif | |
| 		result = cuddWindowReorder(table,lower,upper, | |
| 					   CUDD_REORDER_WINDOW4); | |
| 		if (initialSize <= table->keys - table->isolated) | |
| 		    break; | |
| #ifdef DD_STATS | |
| 		else | |
| 		    (void) fprintf(table->out,"\n"); | |
| #endif | |
| 	    } while (result != 0); | |
| 	    break; | |
| 	case CUDD_REORDER_WINDOW2: | |
| 	case CUDD_REORDER_WINDOW3: | |
| 	case CUDD_REORDER_WINDOW4: | |
| 	case CUDD_REORDER_WINDOW2_CONV: | |
| 	case CUDD_REORDER_WINDOW3_CONV: | |
| 	case CUDD_REORDER_WINDOW4_CONV: | |
| 	    result = cuddWindowReorder(table,lower,upper,method); | |
| 	    break; | |
| 	case CUDD_REORDER_ANNEALING: | |
| 	    result = cuddAnnealing(table,lower,upper); | |
| 	    break; | |
| 	case CUDD_REORDER_GENETIC: | |
| 	    result = cuddGa(table,lower,upper); | |
| 	    break; | |
| 	case CUDD_REORDER_LINEAR: | |
| 	    result = cuddLinearAndSifting(table,lower,upper); | |
| 	    break; | |
| 	case CUDD_REORDER_LINEAR_CONVERGE: | |
| 	    do { | |
| 		initialSize = table->keys - table->isolated; | |
| 		result = cuddLinearAndSifting(table,lower,upper); | |
| 		if (initialSize <= table->keys - table->isolated) | |
| 		    break; | |
| #ifdef DD_STATS | |
| 		else | |
| 		    (void) fprintf(table->out,"\n"); | |
| #endif | |
| 	    } while (result != 0); | |
| 	    break; | |
| 	case CUDD_REORDER_EXACT: | |
| 	    result = cuddExact(table,lower,upper); | |
| 	    break; | |
| 	case CUDD_REORDER_LAZY_SIFT: | |
| 	    result = ddGroupSifting(table,lower,upper,ddVarGroupCheck, | |
| 				    DD_LAZY_SIFT); | |
| 	    break; | |
| 	default: | |
| 	    return(0); | |
| 	} | |
|     } | |
| 
 | |
|     /* Create a single group for all the variables that were sifted, | |
|     ** so that they will be treated as a single block by successive | |
|     ** invocations of ddGroupSifting. | |
|     */ | |
|     ddMergeGroups(table,treenode,lower,upper); | |
| 
 | |
| #ifdef DD_DEBUG | |
|     if (table->enableExtraDebug > 0) | |
|         (void) fprintf(table->out,"ddReorderChildren:"); | |
| #endif | |
|  | |
|     return(result); | |
| 
 | |
| } /* end of ddReorderChildren */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Finds the lower and upper bounds of the group represented | |
|   by treenode. | |
|  | |
|   @details From the index and size fields we need to derive the | |
|   current positions, and find maximum and minimum. | |
|  | |
|   @sideeffect The bounds are returned as side effects. | |
|  | |
| */ | |
| static void | |
| ddFindNodeHiLo( | |
|   DdManager * table, | |
|   MtrNode * treenode, | |
|   int * lower, | |
|   int * upper) | |
| { | |
|     int low; | |
|     int high; | |
| 
 | |
|     /* Check whether no variables in this group already exist. | |
|     ** If so, return immediately. The calling procedure will know from | |
|     ** the values of upper that no reordering is needed. | |
|     */ | |
|     if ((int) treenode->low >= table->size) { | |
| 	*lower = table->size; | |
| 	*upper = -1; | |
| 	return; | |
|     } | |
| 
 | |
|     *lower = low = (unsigned int) table->perm[treenode->index]; | |
|     high = (int) (low + treenode->size - 1); | |
| 
 | |
|     if (high >= table->size) { | |
| 	/* This is the case of a partially existing group. The aim is to | |
| 	** reorder as many variables as safely possible.  If the tree | |
| 	** node is terminal, we just reorder the subset of the group | |
| 	** that is currently in existence.  If the group has | |
| 	** subgroups, then we only reorder those subgroups that are | |
| 	** fully instantiated.  This way we avoid breaking up a group. | |
| 	*/ | |
| 	MtrNode *auxnode = treenode->child; | |
| 	if (auxnode == NULL) { | |
| 	    *upper = (unsigned int) table->size - 1; | |
| 	} else { | |
| 	    /* Search the subgroup that strands the table->size line. | |
| 	    ** If the first group starts at 0 and goes past table->size | |
| 	    ** upper will get -1, thus correctly signaling that no reordering | |
| 	    ** should take place. | |
| 	    */ | |
| 	    while (auxnode != NULL) { | |
| 		int thisLower = table->perm[auxnode->low]; | |
| 		int thisUpper = thisLower + auxnode->size - 1; | |
| 		if (thisUpper >= table->size && thisLower < table->size) | |
| 		    *upper = (unsigned int) thisLower - 1; | |
| 		auxnode = auxnode->younger; | |
| 	    } | |
| 	} | |
|     } else { | |
| 	/* Normal case: All the variables of the group exist. */ | |
| 	*upper = (unsigned int) high; | |
|     } | |
| 
 | |
| #ifdef DD_DEBUG | |
|     /* Make sure that all variables in group are contiguous. */ | |
|     assert(treenode->size >= (MtrHalfWord) (*upper - *lower + 1)); | |
| #endif | |
|  | |
|     return; | |
| 
 | |
| } /* end of ddFindNodeHiLo */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Comparison function used by qsort. | |
|  | |
|   @details Comparison function used by qsort to order the variables | |
|   according to the number of keys in the subtables. | |
|  | |
|   @return the difference in number of keys between the two variables | |
|   being compared. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddUniqueCompareGroup( | |
|   void const * ptrX, | |
|   void const * ptrY) | |
| { | |
|     IndexKey const * pX = (IndexKey const *) ptrX; | |
|     IndexKey const * pY = (IndexKey const *) ptrY; | |
| #if 0 | |
|     if (pY->keys == pX->keys) { | |
| 	return(pX->index - pY->index); | |
|     } | |
| #endif | |
|     return(pY->keys - pX->keys); | |
| 
 | |
| } /* end of ddUniqueCompareGroup */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Sifts from treenode->low to treenode->high. | |
|  | |
|   @details If croupcheck == CUDD_GROUP_CHECK7, it checks for group | |
|   creation at the end of the initial sifting. If a group is created, | |
|   it is then sifted again. After sifting one variable, the group that | |
|   contains it is dissolved. | |
|  | |
|   @return 1 in case of success; 0 otherwise. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddGroupSifting( | |
|   DdManager * table, | |
|   int  lower, | |
|   int  upper, | |
|   DD_CHKFP checkFunction, | |
|   int lazyFlag) | |
| { | |
|     IndexKey	*var; | |
|     int		i,j,x,xInit; | |
|     int		nvars; | |
|     int		classes; | |
|     int		result; | |
|     int		*sifted; | |
|     int		merged; | |
|     int		dissolve; | |
| #ifdef DD_STATS | |
|     unsigned	previousSize; | |
| #endif | |
|     int		xindex; | |
| 
 | |
|     nvars = table->size; | |
| 
 | |
|     /* Order variables to sift. */ | |
|     sifted = NULL; | |
|     var = ALLOC(IndexKey,nvars); | |
|     if (var == NULL) { | |
| 	table->errorCode = CUDD_MEMORY_OUT; | |
| 	goto ddGroupSiftingOutOfMem; | |
|     } | |
|     sifted = ALLOC(int,nvars); | |
|     if (sifted == NULL) { | |
| 	table->errorCode = CUDD_MEMORY_OUT; | |
| 	goto ddGroupSiftingOutOfMem; | |
|     } | |
| 
 | |
|     /* Here we consider only one representative for each group. */ | |
|     for (i = 0, classes = 0; i < nvars; i++) { | |
| 	sifted[i] = 0; | |
| 	x = table->perm[i]; | |
| 	if ((unsigned) x >= table->subtables[x].next) { | |
| 	    var[classes].index = i; | |
| 	    var[classes].keys = table->subtables[x].keys; | |
| 	    classes++; | |
| 	} | |
|     } | |
| 
 | |
|     util_qsort(var, classes, sizeof(IndexKey), ddUniqueCompareGroup); | |
| 
 | |
|     if (lazyFlag) { | |
| 	for (i = 0; i < nvars; i ++) { | |
| 	    ddResetVarHandled(table, i); | |
| 	} | |
|     } | |
| 
 | |
|     /* Now sift. */ | |
|     for (i = 0; i < ddMin(table->siftMaxVar,classes); i++) { | |
| 	if (table->ddTotalNumberSwapping >= table->siftMaxSwap) | |
| 	    break; | |
|         if (util_cpu_time() - table->startTime + table->reordTime | |
|             > table->timeLimit) { | |
|             table->autoDyn = 0; /* prevent further reordering */ | |
|             break; | |
|         } | |
|         if (table->terminationCallback != NULL && | |
|             table->terminationCallback(table->tcbArg)) { | |
|             table->autoDyn = 0; /* prevent further reordering */ | |
|             break; | |
|         } | |
| 	xindex = var[i].index; | |
| 	if (sifted[xindex] == 1) /* variable already sifted as part of group */ | |
| 	    continue; | |
| 	x = table->perm[xindex]; /* find current level of this variable */ | |
| 
 | |
| 	if (x < lower || x > upper || table->subtables[x].bindVar == 1) | |
| 	    continue; | |
| #ifdef DD_STATS | |
| 	previousSize = table->keys - table->isolated; | |
| #endif | |
| #ifdef DD_DEBUG | |
| 	/* x is bottom of group */ | |
| 	assert((unsigned) x >= table->subtables[x].next); | |
| #endif | |
| 	if ((unsigned) x == table->subtables[x].next) { | |
| 	    dissolve = 1; | |
| 	    result = ddGroupSiftingAux(table,x,lower,upper,checkFunction, | |
| 					lazyFlag); | |
| 	} else { | |
| 	    dissolve = 0; | |
| 	    result = ddGroupSiftingAux(table,x,lower,upper,ddNoCheck,lazyFlag); | |
| 	} | |
| 	if (!result) goto ddGroupSiftingOutOfMem; | |
| 
 | |
| 	/* check for aggregation */ | |
| 	merged = 0; | |
| 	if (lazyFlag == 0 && table->groupcheck == CUDD_GROUP_CHECK7) { | |
| 	    x = table->perm[xindex]; /* find current level */ | |
| 	    if ((unsigned) x == table->subtables[x].next) { /* not part of a group */ | |
| 		if (x != upper && sifted[table->invperm[x+1]] == 0 && | |
| 		(unsigned) x+1 == table->subtables[x+1].next) { | |
| 		    if (ddSecDiffCheck(table,x,x+1)) { | |
| 			merged =1; | |
| 			ddCreateGroup(table,x,x+1); | |
| 		    } | |
| 		} | |
| 		if (x != lower && sifted[table->invperm[x-1]] == 0 && | |
| 		(unsigned) x-1 == table->subtables[x-1].next) { | |
| 		    if (ddSecDiffCheck(table,x-1,x)) { | |
| 			merged =1; | |
| 			ddCreateGroup(table,x-1,x); | |
| 		    } | |
| 		} | |
| 	    } | |
| 	} | |
| 
 | |
| 	if (merged) { /* a group was created */ | |
| 	    /* move x to bottom of group */ | |
| 	    while ((unsigned) x < table->subtables[x].next) | |
| 		x = table->subtables[x].next; | |
| 	    /* sift */ | |
| 	    result = ddGroupSiftingAux(table,x,lower,upper,ddNoCheck,lazyFlag); | |
| 	    if (!result) goto ddGroupSiftingOutOfMem; | |
| #ifdef DD_STATS | |
| 	    if (table->keys < previousSize + table->isolated) { | |
| 		(void) fprintf(table->out,"_"); | |
| 	    } else if (table->keys > previousSize + table->isolated) { | |
| 		(void) fprintf(table->out,"^"); | |
| 	    } else { | |
| 		(void) fprintf(table->out,"*"); | |
| 	    } | |
| 	    fflush(table->out); | |
| 	} else { | |
| 	    if (table->keys < previousSize + table->isolated) { | |
| 		(void) fprintf(table->out,"-"); | |
| 	    } else if (table->keys > previousSize + table->isolated) { | |
| 		(void) fprintf(table->out,"+"); | |
| 	    } else { | |
| 		(void) fprintf(table->out,"="); | |
| 	    } | |
| 	    fflush(table->out); | |
| #endif | |
| 	} | |
| 
 | |
| 	/* Mark variables in the group just sifted. */ | |
| 	x = table->perm[xindex]; | |
| 	if ((unsigned) x != table->subtables[x].next) { | |
| 	    xInit = x; | |
| 	    do { | |
| 		j = table->invperm[x]; | |
| 		sifted[j] = 1; | |
| 		x = table->subtables[x].next; | |
| 	    } while (x != xInit); | |
| 
 | |
| 	    /* Dissolve the group if it was created. */ | |
| 	    if (lazyFlag == 0 && dissolve) { | |
| 		do { | |
| 		    j = table->subtables[x].next; | |
| 		    table->subtables[x].next = x; | |
| 		    x = j; | |
| 		} while (x != xInit); | |
| 	    } | |
| 	} | |
| 
 | |
| #ifdef DD_DEBUG | |
| 	if (table->enableExtraDebug > 0) | |
|             (void) fprintf(table->out,"ddGroupSifting:"); | |
| #endif | |
|  | |
|         if (lazyFlag) ddSetVarHandled(table, xindex); | |
|     } /* for */ | |
| 
 | |
|     FREE(sifted); | |
|     FREE(var); | |
| 
 | |
|     return(1); | |
| 
 | |
| ddGroupSiftingOutOfMem: | |
|     if (var != NULL)	FREE(var); | |
|     if (sifted != NULL)	FREE(sifted); | |
| 
 | |
|     return(0); | |
| 
 | |
| } /* end of ddGroupSifting */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Creates a group encompassing variables from x to y in the | |
|   %DD table. | |
|  | |
|   @details In the current implementation it must be y == x+1. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static void | |
| ddCreateGroup( | |
|   DdManager * table, | |
|   int  x, | |
|   int  y) | |
| { | |
|     int  gybot; | |
| 
 | |
| #ifdef DD_DEBUG | |
|     assert(y == x+1); | |
| #endif | |
|  | |
|     /* Find bottom of second group. */ | |
|     gybot = y; | |
|     while ((unsigned) gybot < table->subtables[gybot].next) | |
| 	gybot = table->subtables[gybot].next; | |
| 
 | |
|     /* Link groups. */ | |
|     table->subtables[x].next = y; | |
|     table->subtables[gybot].next = x; | |
| 
 | |
|     return; | |
| 
 | |
| } /* ddCreateGroup */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Sifts one variable up and down until it has taken all | |
|   positions. Checks for aggregation. | |
|  | |
|   @details There may be at most two sweeps, even if the group grows. | |
|   Assumes that x is either an isolated variable, or it is the bottom | |
|   of a group. All groups may not have been found. The variable being | |
|   moved is returned to the best position seen during sifting. | |
|  | |
|   @return 1 in case of success; 0 otherwise. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddGroupSiftingAux( | |
|   DdManager * table, | |
|   int  x, | |
|   int  xLow, | |
|   int  xHigh, | |
|   DD_CHKFP checkFunction, | |
|   int lazyFlag) | |
| { | |
|     Move *move; | |
|     Move *moves;	/* list of moves */ | |
|     int  initialSize; | |
|     int  result; | |
|     int  y; | |
|     int  topbot; | |
| 
 | |
| #ifdef DD_DEBUG | |
|     if (table->enableExtraDebug > 0) | |
|         (void) fprintf(table->out, | |
|                        "ddGroupSiftingAux from %d to %d\n",xLow,xHigh); | |
|     assert((unsigned) x >= table->subtables[x].next); /* x is bottom of group */ | |
| #endif | |
|  | |
|     table->originalSize = (table->keys - table->isolated); | |
|     initialSize = (int) table->originalSize; | |
|     moves = NULL; | |
| 
 | |
|     /* If we have a singleton, we check for aggregation in both | |
|     ** directions before we sift. | |
|     */ | |
|     if ((unsigned) x == table->subtables[x].next) { | |
| 	/* Will go down first, unless x == xHigh: | |
| 	** Look for aggregation above x. | |
| 	*/ | |
| 	for (y = x; y > xLow; y--) { | |
| 	    if (!checkFunction(table,y-1,y)) | |
| 		break; | |
| 	    topbot = table->subtables[y-1].next; /* find top of y-1's group */ | |
| 	    table->subtables[y-1].next = y; | |
| 	    table->subtables[x].next = topbot; /* x is bottom of group so its */ | |
| 					       /* next is top of y-1's group */ | |
| 	    y = topbot + 1; /* add 1 for y--; new y is top of group */ | |
| 	} | |
| 	/* Will go up first unless x == xlow: | |
| 	** Look for aggregation below x. | |
| 	*/ | |
| 	for (y = x; y < xHigh; y++) { | |
| 	    if (!checkFunction(table,y,y+1)) | |
| 		break; | |
| 	    /* find bottom of y+1's group */ | |
| 	    topbot = y + 1; | |
| 	    while ((unsigned) topbot < table->subtables[topbot].next) { | |
| 		topbot = table->subtables[topbot].next; | |
| 	    } | |
| 	    table->subtables[topbot].next = table->subtables[y].next; | |
| 	    table->subtables[y].next = y + 1; | |
| 	    y = topbot - 1; /* subtract 1 for y++; new y is bottom of group */ | |
| 	} | |
|     } | |
| 
 | |
|     /* Now x may be in the middle of a group. | |
|     ** Find bottom of x's group. | |
|     */ | |
|     while ((unsigned) x < table->subtables[x].next) | |
| 	x = table->subtables[x].next; | |
| 
 | |
|     if (x == xLow) { /* Sift down */ | |
| #ifdef DD_DEBUG | |
| 	/* x must be a singleton */ | |
| 	assert((unsigned) x == table->subtables[x].next); | |
| #endif | |
| 	if (x == xHigh) return(1);	/* just one variable */ | |
| 
 | |
| 	if (!ddGroupSiftingDown(table,x,xHigh,checkFunction,&moves)) | |
| 	    goto ddGroupSiftingAuxOutOfMem; | |
| 	/* at this point x == xHigh, unless early term */ | |
| 
 | |
| 	/* move backward and stop at best position */ | |
| 	result = ddGroupSiftingBackward(table,moves,initialSize, | |
| 					DD_SIFT_DOWN,lazyFlag); | |
| #ifdef DD_DEBUG | |
| 	assert(table->keys - table->isolated <= (unsigned) initialSize); | |
| #endif | |
| 	if (!result) goto ddGroupSiftingAuxOutOfMem; | |
| 
 | |
|     } else if (cuddNextHigh(table,x) > xHigh) { /* Sift up */ | |
| #ifdef DD_DEBUG | |
| 	/* x is bottom of group */ | |
| 	assert((unsigned) x >= table->subtables[x].next); | |
| #endif | |
| 	/* Find top of x's group */ | |
| 	x = table->subtables[x].next; | |
| 
 | |
| 	if (!ddGroupSiftingUp(table,x,xLow,checkFunction,&moves)) | |
| 	    goto ddGroupSiftingAuxOutOfMem; | |
| 	/* at this point x == xLow, unless early term */ | |
| 
 | |
| 	/* move backward and stop at best position */ | |
| 	result = ddGroupSiftingBackward(table,moves,initialSize, | |
| 					DD_SIFT_UP,lazyFlag); | |
| #ifdef DD_DEBUG | |
| 	assert(table->keys - table->isolated <= (unsigned) initialSize); | |
| #endif | |
| 	if (!result) goto ddGroupSiftingAuxOutOfMem; | |
| 
 | |
|     } else if (x - xLow > xHigh - x) { /* must go down first: shorter */ | |
| 	if (!ddGroupSiftingDown(table,x,xHigh,checkFunction,&moves)) | |
| 	    goto ddGroupSiftingAuxOutOfMem; | |
| 	/* at this point x == xHigh, unless early term */ | |
| 
 | |
| 	/* Find top of group */ | |
| 	if (moves) { | |
| 	    x = moves->y; | |
| 	} | |
| 	while ((unsigned) x < table->subtables[x].next) | |
| 	    x = table->subtables[x].next; | |
| 	x = table->subtables[x].next; | |
| #ifdef DD_DEBUG | |
| 	/* x should be the top of a group */ | |
| 	assert((unsigned) x <= table->subtables[x].next); | |
| #endif | |
|  | |
| 	if (!ddGroupSiftingUp(table,x,xLow,checkFunction,&moves)) | |
| 	    goto ddGroupSiftingAuxOutOfMem; | |
| 
 | |
| 	/* move backward and stop at best position */ | |
| 	result = ddGroupSiftingBackward(table,moves,initialSize, | |
| 					DD_SIFT_UP,lazyFlag); | |
| #ifdef DD_DEBUG | |
| 	assert(table->keys - table->isolated <= (unsigned) initialSize); | |
| #endif | |
| 	if (!result) goto ddGroupSiftingAuxOutOfMem; | |
| 
 | |
|     } else { /* moving up first: shorter */ | |
| 	/* Find top of x's group */ | |
| 	x = table->subtables[x].next; | |
| 
 | |
| 	if (!ddGroupSiftingUp(table,x,xLow,checkFunction,&moves)) | |
| 	    goto ddGroupSiftingAuxOutOfMem; | |
| 	/* at this point x == xHigh, unless early term */ | |
| 
 | |
| 	if (moves) { | |
| 	    x = moves->x; | |
| 	} | |
| 	while ((unsigned) x < table->subtables[x].next) | |
| 	    x = table->subtables[x].next; | |
| #ifdef DD_DEBUG | |
| 	/* x is bottom of a group */ | |
| 	assert((unsigned) x >= table->subtables[x].next); | |
| #endif | |
|  | |
| 	if (!ddGroupSiftingDown(table,x,xHigh,checkFunction,&moves)) | |
| 	    goto ddGroupSiftingAuxOutOfMem; | |
| 
 | |
| 	/* move backward and stop at best position */ | |
| 	result = ddGroupSiftingBackward(table,moves,initialSize, | |
| 					DD_SIFT_DOWN,lazyFlag); | |
| #ifdef DD_DEBUG | |
| 	assert(table->keys - table->isolated <= (unsigned) initialSize); | |
| #endif | |
| 	if (!result) goto ddGroupSiftingAuxOutOfMem; | |
|     } | |
| 
 | |
|     while (moves != NULL) { | |
| 	move = moves->next; | |
| 	cuddDeallocMove(table, moves); | |
| 	moves = move; | |
|     } | |
| 
 | |
|     return(1); | |
| 
 | |
| ddGroupSiftingAuxOutOfMem: | |
|     while (moves != NULL) { | |
| 	move = moves->next; | |
| 	cuddDeallocMove(table, moves); | |
| 	moves = move; | |
|     } | |
| 
 | |
|     return(0); | |
| 
 | |
| } /* end of ddGroupSiftingAux */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Sifts up a variable until either it reaches position xLow | |
|   or the size of the %DD heap increases too much. | |
|  | |
|   @details Assumes that y is the top of a group (or a singleton). | |
|   Checks y for aggregation to the adjacent variables. Records all the | |
|   moves that are appended to the list of moves received as input and | |
|   returned as a side effect. | |
|  | |
|   @return 1 in case of success; 0 otherwise. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddGroupSiftingUp( | |
|   DdManager * table, | |
|   int  y, | |
|   int  xLow, | |
|   DD_CHKFP checkFunction, | |
|   Move ** moves) | |
| { | |
|     Move *move; | |
|     int  x; | |
|     int  size; | |
|     int  i; | |
|     int  gxtop,gybot; | |
|     int  limitSize; | |
|     int  xindex, yindex; | |
|     int  zindex; | |
|     int  z; | |
|     unsigned int isolated; | |
|     int  L;	/* lower bound on DD size */ | |
| #ifdef DD_DEBUG | |
|     int  checkL; | |
| #endif | |
|  | |
|     yindex = table->invperm[y]; | |
| 
 | |
|     /* Initialize the lower bound. | |
|     ** The part of the DD below the bottom of y's group will not change. | |
|     ** The part of the DD above y that does not interact with any | |
|     ** variable of y's group will not change. | |
|     ** The rest may vanish in the best case, except for | |
|     ** the nodes at level xLow, which will not vanish, regardless. | |
|     ** What we use here is not really a lower bound, because we ignore | |
|     ** the interactions with all variables except y. | |
|     */ | |
|     limitSize = L = (int) (table->keys - table->isolated); | |
|     gybot = y; | |
|     while ((unsigned) gybot < table->subtables[gybot].next) | |
| 	gybot = table->subtables[gybot].next; | |
|     for (z = xLow + 1; z <= gybot; z++) { | |
| 	zindex = table->invperm[z]; | |
| 	if (zindex == yindex || cuddTestInteract(table,zindex,yindex)) { | |
| 	    isolated = table->vars[zindex]->ref == 1; | |
| 	    L -= table->subtables[z].keys - isolated; | |
| 	} | |
|     } | |
| 
 | |
|     x = cuddNextLow(table,y); | |
|     while (x >= xLow && L <= limitSize) { | |
| #ifdef DD_DEBUG | |
| 	gybot = y; | |
| 	while ((unsigned) gybot < table->subtables[gybot].next) | |
| 	    gybot = table->subtables[gybot].next; | |
| 	checkL = table->keys - table->isolated; | |
| 	for (z = xLow + 1; z <= gybot; z++) { | |
| 	    zindex = table->invperm[z]; | |
| 	    if (zindex == yindex || cuddTestInteract(table,zindex,yindex)) { | |
| 		isolated = table->vars[zindex]->ref == 1; | |
| 		checkL -= table->subtables[z].keys - isolated; | |
| 	    } | |
| 	} | |
| 	if (table->enableExtraDebug > 0 && L != checkL) { | |
| 	    (void) fprintf(table->out, | |
| 			   "Inaccurate lower bound: L = %d checkL = %d\n", | |
| 			   L, checkL); | |
| 	} | |
| #endif | |
| 	gxtop = table->subtables[x].next; | |
| 	if (checkFunction(table,x,y)) { | |
| 	    /* Group found, attach groups */ | |
| 	    table->subtables[x].next = y; | |
| 	    i = table->subtables[y].next; | |
| 	    while (table->subtables[i].next != (unsigned) y) | |
| 		i = table->subtables[i].next; | |
| 	    table->subtables[i].next = gxtop; | |
| 	    move = (Move *)cuddDynamicAllocNode(table); | |
| 	    if (move == NULL) goto ddGroupSiftingUpOutOfMem; | |
| 	    move->x = x; | |
| 	    move->y = y; | |
| 	    move->flags = MTR_NEWNODE; | |
| 	    move->size = (int) (table->keys - table->isolated); | |
| 	    move->next = *moves; | |
| 	    *moves = move; | |
| 	} else if (table->subtables[x].next == (unsigned) x && | |
| 		   table->subtables[y].next == (unsigned) y) { | |
| 	    /* x and y are self groups */ | |
| 	    xindex = table->invperm[x]; | |
| 	    size = cuddSwapInPlace(table,x,y); | |
| #ifdef DD_DEBUG | |
| 	    assert(table->subtables[x].next == (unsigned) x); | |
| 	    assert(table->subtables[y].next == (unsigned) y); | |
| #endif | |
| 	    if (size == 0) goto ddGroupSiftingUpOutOfMem; | |
| 	    /* Update the lower bound. */ | |
| 	    if (cuddTestInteract(table,xindex,yindex)) { | |
| 		isolated = table->vars[xindex]->ref == 1; | |
| 		L += table->subtables[y].keys - isolated; | |
| 	    } | |
| 	    move = (Move *)cuddDynamicAllocNode(table); | |
| 	    if (move == NULL) goto ddGroupSiftingUpOutOfMem; | |
| 	    move->x = x; | |
| 	    move->y = y; | |
| 	    move->flags = MTR_DEFAULT; | |
| 	    move->size = size; | |
| 	    move->next = *moves; | |
| 	    *moves = move; | |
| 
 | |
| #ifdef DD_DEBUG | |
| 	    if (table->enableExtraDebug > 0) | |
|                 (void) fprintf(table->out, | |
|                                "ddGroupSiftingUp (2 single groups):\n"); | |
| #endif | |
| 	    if ((double) size > (double) limitSize * table->maxGrowth) | |
| 		return(1); | |
| 	    if (size < limitSize) limitSize = size; | |
| 	} else { /* Group move */ | |
| 	    size = ddGroupMove(table,x,y,moves); | |
| 	    if (size == 0) goto ddGroupSiftingUpOutOfMem; | |
| 	    /* Update the lower bound. */ | |
| 	    z = (*moves)->y; | |
| 	    do { | |
| 		zindex = table->invperm[z]; | |
| 		if (cuddTestInteract(table,zindex,yindex)) { | |
| 		    isolated = table->vars[zindex]->ref == 1; | |
| 		    L += table->subtables[z].keys - isolated; | |
| 		} | |
| 		z = table->subtables[z].next; | |
| 	    } while (z != (int) (*moves)->y); | |
| 	    if ((double) size > (double) limitSize * table->maxGrowth) | |
| 		return(1); | |
| 	    if (size < limitSize) limitSize = size; | |
| 	} | |
| 	y = gxtop; | |
| 	x = cuddNextLow(table,y); | |
|     } | |
| 
 | |
|     return(1); | |
| 
 | |
| ddGroupSiftingUpOutOfMem: | |
|     while (*moves != NULL) { | |
| 	move = (*moves)->next; | |
| 	cuddDeallocMove(table, *moves); | |
| 	*moves = move; | |
|     } | |
|     return(0); | |
| 
 | |
| } /* end of ddGroupSiftingUp */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Sifts down a variable until it reaches position xHigh. | |
|  | |
|   @details Assumes that x is the bottom of a group (or a singleton). | |
|   Records all the moves. | |
|  | |
|   @return 1 in case of success; 0 otherwise. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddGroupSiftingDown( | |
|   DdManager * table, | |
|   int  x, | |
|   int  xHigh, | |
|   DD_CHKFP checkFunction, | |
|   Move ** moves) | |
| { | |
|     Move *move; | |
|     int  y; | |
|     int  size; | |
|     int  limitSize; | |
|     int  gxtop,gybot; | |
|     int  R;	/* upper bound on node decrease */ | |
|     int  xindex, yindex; | |
|     unsigned isolated; | |
|     int  allVars; | |
|     int  z; | |
|     int  zindex; | |
| #ifdef DD_DEBUG | |
|     int  checkR; | |
| #endif | |
|  | |
|     /* If the group consists of simple variables, there is no point in | |
|     ** sifting it down. This check is redundant if the projection functions | |
|     ** do not have external references, because the computation of the | |
|     ** lower bound takes care of the problem.  It is necessary otherwise to | |
|     ** prevent the sifting down of simple variables. */ | |
|     y = x; | |
|     allVars = 1; | |
|     do { | |
| 	if (table->subtables[y].keys != 1) { | |
| 	    allVars = 0; | |
| 	    break; | |
| 	} | |
| 	y = table->subtables[y].next; | |
|     } while (table->subtables[y].next != (unsigned) x); | |
|     if (allVars) | |
| 	return(1); | |
| 
 | |
|     /* Initialize R. */ | |
|     xindex = table->invperm[x]; | |
|     gxtop = table->subtables[x].next; | |
|     limitSize = size = (int) (table->keys - table->isolated); | |
|     R = 0; | |
|     for (z = xHigh; z > gxtop; z--) { | |
| 	zindex = table->invperm[z]; | |
| 	if (zindex == xindex || cuddTestInteract(table,xindex,zindex)) { | |
| 	    isolated = table->vars[zindex]->ref == 1; | |
| 	    R += table->subtables[z].keys - isolated; | |
| 	} | |
|     } | |
| 
 | |
|     y = cuddNextHigh(table,x); | |
|     while (y <= xHigh && size - R < limitSize) { | |
| #ifdef DD_DEBUG | |
| 	gxtop = table->subtables[x].next; | |
| 	checkR = 0; | |
| 	for (z = xHigh; z > gxtop; z--) { | |
| 	    zindex = table->invperm[z]; | |
| 	    if (zindex == xindex || cuddTestInteract(table,xindex,zindex)) { | |
| 		isolated = table->vars[zindex]->ref == 1; | |
| 		checkR += table->subtables[z].keys - isolated; | |
| 	    } | |
| 	} | |
| 	assert(R >= checkR); | |
| #endif | |
| 	/* Find bottom of y group. */ | |
| 	gybot = table->subtables[y].next; | |
| 	while (table->subtables[gybot].next != (unsigned) y) | |
| 	    gybot = table->subtables[gybot].next; | |
| 
 | |
| 	if (checkFunction(table,x,y)) { | |
| 	    /* Group found: attach groups and record move. */ | |
| 	    gxtop = table->subtables[x].next; | |
| 	    table->subtables[x].next = y; | |
| 	    table->subtables[gybot].next = gxtop; | |
| 	    move = (Move *)cuddDynamicAllocNode(table); | |
| 	    if (move == NULL) goto ddGroupSiftingDownOutOfMem; | |
| 	    move->x = x; | |
| 	    move->y = y; | |
| 	    move->flags = MTR_NEWNODE; | |
| 	    move->size = (int) (table->keys - table->isolated); | |
| 	    move->next = *moves; | |
| 	    *moves = move; | |
| 	} else if (table->subtables[x].next == (unsigned) x && | |
| 		   table->subtables[y].next == (unsigned) y) { | |
| 	    /* x and y are self groups */ | |
| 	    /* Update upper bound on node decrease. */ | |
| 	    yindex = table->invperm[y]; | |
| 	    if (cuddTestInteract(table,xindex,yindex)) { | |
| 		isolated = table->vars[yindex]->ref == 1; | |
| 		R -= table->subtables[y].keys - isolated; | |
| 	    } | |
| 	    size = cuddSwapInPlace(table,x,y); | |
| #ifdef DD_DEBUG | |
| 	    assert(table->subtables[x].next == (unsigned) x); | |
| 	    assert(table->subtables[y].next == (unsigned) y); | |
| #endif | |
| 	    if (size == 0) goto ddGroupSiftingDownOutOfMem; | |
| 
 | |
| 	    /* Record move. */ | |
| 	    move = (Move *) cuddDynamicAllocNode(table); | |
| 	    if (move == NULL) goto ddGroupSiftingDownOutOfMem; | |
| 	    move->x = x; | |
| 	    move->y = y; | |
| 	    move->flags = MTR_DEFAULT; | |
| 	    move->size = size; | |
| 	    move->next = *moves; | |
| 	    *moves = move; | |
| 
 | |
| #ifdef DD_DEBUG | |
| 	    if (table->enableExtraDebug > 0) | |
|                 (void) fprintf(table->out, | |
|                                "ddGroupSiftingDown (2 single groups):\n"); | |
| #endif | |
| 	    if ((double) size > (double) limitSize * table->maxGrowth) | |
| 		return(1); | |
| 	    if (size < limitSize) limitSize = size; | |
| 
 | |
| 	} else { /* Group move */ | |
| 	    /* Update upper bound on node decrease: first phase. */ | |
| 	    gxtop = table->subtables[x].next; | |
| 	    z = gxtop + 1; | |
| 	    do { | |
| 		zindex = table->invperm[z]; | |
| 		if (zindex == xindex || cuddTestInteract(table,xindex,zindex)) { | |
| 		    isolated = table->vars[zindex]->ref == 1; | |
| 		    R -= table->subtables[z].keys - isolated; | |
| 		} | |
| 		z++; | |
| 	    } while (z <= gybot); | |
| 	    size = ddGroupMove(table,x,y,moves); | |
| 	    if (size == 0) goto ddGroupSiftingDownOutOfMem; | |
| 	    if ((double) size > (double) limitSize * table->maxGrowth) | |
| 		return(1); | |
| 	    if (size < limitSize) limitSize = size; | |
| 
 | |
| 	    /* Update upper bound on node decrease: second phase. */ | |
| 	    gxtop = table->subtables[gybot].next; | |
| 	    for (z = gxtop + 1; z <= gybot; z++) { | |
| 		zindex = table->invperm[z]; | |
| 		if (zindex == xindex || cuddTestInteract(table,xindex,zindex)) { | |
| 		    isolated = table->vars[zindex]->ref == 1; | |
| 		    R += table->subtables[z].keys - isolated; | |
| 		} | |
| 	    } | |
| 	} | |
| 	x = gybot; | |
| 	y = cuddNextHigh(table,x); | |
|     } | |
| 
 | |
|     return(1); | |
| 
 | |
| ddGroupSiftingDownOutOfMem: | |
|     while (*moves != NULL) { | |
| 	move = (*moves)->next; | |
| 	cuddDeallocMove(table, *moves); | |
| 	*moves = move; | |
|     } | |
| 
 | |
|     return(0); | |
| 
 | |
| } /* end of ddGroupSiftingDown */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Swaps two groups and records the move. | |
|  | |
|   @return the number of keys in the %DD table in case of success; 0 | |
|   otherwise. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddGroupMove( | |
|   DdManager * table, | |
|   int  x, | |
|   int  y, | |
|   Move ** moves) | |
| { | |
|     Move *move; | |
|     int  size; | |
|     int  i,j,xtop,xbot,xsize,ytop,ybot,ysize,newxtop; | |
|     int  swapx = 0, swapy = 0; | |
| #if defined(DD_DEBUG) && defined(DD_VERBOSE) | |
|     int  initialSize,bestSize; | |
| #endif | |
|  | |
| #ifdef DD_DEBUG | |
|     /* We assume that x < y */ | |
|     assert(x < y); | |
| #endif | |
|     /* Find top, bottom, and size for the two groups. */ | |
|     xbot = x; | |
|     xtop = table->subtables[x].next; | |
|     xsize = xbot - xtop + 1; | |
|     ybot = y; | |
|     while ((unsigned) ybot < table->subtables[ybot].next) | |
| 	ybot = table->subtables[ybot].next; | |
|     ytop = y; | |
|     ysize = ybot - ytop + 1; | |
| 
 | |
| #if defined(DD_DEBUG) && defined(DD_VERBOSE) | |
|     initialSize = bestSize = table->keys - table->isolated; | |
| #endif | |
|     /* Sift the variables of the second group up through the first group */ | |
|     for (i = 1; i <= ysize; i++) { | |
| 	for (j = 1; j <= xsize; j++) { | |
| 	    size = cuddSwapInPlace(table,x,y); | |
| 	    if (size == 0) goto ddGroupMoveOutOfMem; | |
| #if defined(DD_DEBUG) && defined(DD_VERBOSE) | |
| 	    if (size < bestSize) | |
| 		bestSize = size; | |
| #endif | |
| 	    swapx = x; swapy = y; | |
| 	    y = x; | |
| 	    x = cuddNextLow(table,y); | |
| 	} | |
| 	y = ytop + i; | |
| 	x = cuddNextLow(table,y); | |
|     } | |
| #if defined(DD_DEBUG) && defined(DD_VERBOSE) | |
|     if ((bestSize < initialSize) && (bestSize < size)) | |
| 	(void) fprintf(table->out,"Missed local minimum: initialSize:%d  bestSize:%d  finalSize:%d\n",initialSize,bestSize,size); | |
| #endif | |
|  | |
|     /* fix groups */ | |
|     y = xtop; /* ytop is now where xtop used to be */ | |
|     for (i = 0; i < ysize - 1; i++) { | |
| 	table->subtables[y].next = cuddNextHigh(table,y); | |
| 	y = cuddNextHigh(table,y); | |
|     } | |
|     table->subtables[y].next = xtop; /* y is bottom of its group, join */ | |
| 				    /* it to top of its group */ | |
|     x = cuddNextHigh(table,y); | |
|     newxtop = x; | |
|     for (i = 0; i < xsize - 1; i++) { | |
| 	table->subtables[x].next = cuddNextHigh(table,x); | |
| 	x = cuddNextHigh(table,x); | |
|     } | |
|     table->subtables[x].next = newxtop; /* x is bottom of its group, join */ | |
| 				    /* it to top of its group */ | |
| #ifdef DD_DEBUG | |
|     if (table->enableExtraDebug > 0) | |
|         (void) fprintf(table->out,"ddGroupMove:\n"); | |
| #endif | |
|  | |
|     /* Store group move */ | |
|     move = (Move *) cuddDynamicAllocNode(table); | |
|     if (move == NULL) goto ddGroupMoveOutOfMem; | |
|     move->x = swapx; | |
|     move->y = swapy; | |
|     move->flags = MTR_DEFAULT; | |
|     move->size = (int) (table->keys - table->isolated); | |
|     move->next = *moves; | |
|     *moves = move; | |
| 
 | |
|     return((int)(table->keys - table->isolated)); | |
| 
 | |
| ddGroupMoveOutOfMem: | |
|     while (*moves != NULL) { | |
| 	move = (*moves)->next; | |
| 	cuddDeallocMove(table, *moves); | |
| 	*moves = move; | |
|     } | |
|     return(0); | |
| 
 | |
| } /* end of ddGroupMove */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Undoes the swap two groups. | |
|  | |
|   @return 1 in case of success; 0 otherwise. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddGroupMoveBackward( | |
|   DdManager * table, | |
|   int  x, | |
|   int  y) | |
| { | |
|     int size; | |
|     int i,j,xtop,xbot,xsize,ytop,ybot,ysize,newxtop; | |
| 
 | |
| 
 | |
| #ifdef DD_DEBUG | |
|     /* We assume that x < y */ | |
|     assert(x < y); | |
| #endif | |
|  | |
|     /* Find top, bottom, and size for the two groups. */ | |
|     xbot = x; | |
|     xtop = table->subtables[x].next; | |
|     xsize = xbot - xtop + 1; | |
|     ybot = y; | |
|     while ((unsigned) ybot < table->subtables[ybot].next) | |
| 	ybot = table->subtables[ybot].next; | |
|     ytop = y; | |
|     ysize = ybot - ytop + 1; | |
| 
 | |
|     /* Sift the variables of the second group up through the first group */ | |
|     for (i = 1; i <= ysize; i++) { | |
| 	for (j = 1; j <= xsize; j++) { | |
| 	    size = cuddSwapInPlace(table,x,y); | |
| 	    if (size == 0) | |
| 		return(0); | |
| 	    y = x; | |
| 	    x = cuddNextLow(table,y); | |
| 	} | |
| 	y = ytop + i; | |
| 	x = cuddNextLow(table,y); | |
|     } | |
| 
 | |
|     /* fix groups */ | |
|     y = xtop; | |
|     for (i = 0; i < ysize - 1; i++) { | |
| 	table->subtables[y].next = cuddNextHigh(table,y); | |
| 	y = cuddNextHigh(table,y); | |
|     } | |
|     table->subtables[y].next = xtop; /* y is bottom of its group, join */ | |
| 				    /* to its top */ | |
|     x = cuddNextHigh(table,y); | |
|     newxtop = x; | |
|     for (i = 0; i < xsize - 1; i++) { | |
| 	table->subtables[x].next = cuddNextHigh(table,x); | |
| 	x = cuddNextHigh(table,x); | |
|     } | |
|     table->subtables[x].next = newxtop; /* x is bottom of its group, join */ | |
| 				    /* to its top */ | |
| #ifdef DD_DEBUG | |
|     if (table->enableExtraDebug > 0) | |
|         (void) fprintf(table->out,"ddGroupMoveBackward:\n"); | |
| #endif | |
|  | |
|     return(1); | |
| 
 | |
| } /* end of ddGroupMoveBackward */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Determines the best position for a variables and returns | |
|   it there. | |
|  | |
|   @return 1 in case of success; 0 otherwise. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddGroupSiftingBackward( | |
|   DdManager * table, | |
|   Move * moves, | |
|   int  size, | |
|   int  upFlag, | |
|   int  lazyFlag) | |
| { | |
|     Move *move; | |
|     int  res; | |
|     Move *end_move = NULL; | |
|     int diff, tmp_diff; | |
|     int index; | |
|     unsigned int pairlev; | |
| 
 | |
|     if (lazyFlag) { | |
| 	end_move = NULL; | |
| 
 | |
| 	/* Find the minimum size, and the earliest position at which it | |
| 	** was achieved. */ | |
| 	for (move = moves; move != NULL; move = move->next) { | |
| 	    if (move->size < size) { | |
| 		size = move->size; | |
| 		end_move = move; | |
| 	    } else if (move->size == size) { | |
| 		if (end_move == NULL) end_move = move; | |
| 	    } | |
| 	} | |
| 
 | |
| 	/* Find among the moves that give minimum size the one that | |
| 	** minimizes the distance from the corresponding variable. */ | |
| 	if (moves != NULL) { | |
| 	    diff = Cudd_ReadSize(table) + 1; | |
| 	    index = (upFlag == 1) ? | |
| 		    table->invperm[moves->x] : table->invperm[moves->y]; | |
| 	    pairlev = | |
| 		(unsigned) table->perm[Cudd_bddReadPairIndex(table, index)]; | |
| 
 | |
| 	    for (move = moves; move != NULL; move = move->next) { | |
| 		if (move->size == size) { | |
| 		    if (upFlag == 1) { | |
| 			tmp_diff = (move->x > pairlev) ? | |
| 				    move->x - pairlev : pairlev - move->x; | |
| 		    } else { | |
| 			tmp_diff = (move->y > pairlev) ? | |
| 				    move->y - pairlev : pairlev - move->y; | |
| 		    } | |
| 		    if (tmp_diff < diff) { | |
| 			diff = tmp_diff; | |
| 			end_move = move; | |
| 		    } | |
| 		} | |
| 	    } | |
| 	} | |
|     } else { | |
| 	/* Find the minimum size. */ | |
| 	for (move = moves; move != NULL; move = move->next) { | |
| 	    if (move->size < size) { | |
| 		size = move->size; | |
| 	    } | |
| 	} | |
|     } | |
| 
 | |
|     /* In case of lazy sifting, end_move identifies the position at | |
|     ** which we want to stop.  Otherwise, we stop as soon as we meet | |
|     ** the minimum size. */ | |
|     for (move = moves; move != NULL; move = move->next) { | |
| 	if (lazyFlag) { | |
| 	    if (move == end_move) return(1); | |
| 	} else { | |
| 	    if (move->size == size) return(1); | |
| 	} | |
| 	if ((table->subtables[move->x].next == move->x) && | |
| 	(table->subtables[move->y].next == move->y)) { | |
| 	    res = cuddSwapInPlace(table,(int)move->x,(int)move->y); | |
| 	    if (!res) return(0); | |
| #ifdef DD_DEBUG | |
| 	    if (table->enableExtraDebug > 0) | |
|                 (void) fprintf(table->out,"ddGroupSiftingBackward:\n"); | |
| 	    assert(table->subtables[move->x].next == move->x); | |
| 	    assert(table->subtables[move->y].next == move->y); | |
| #endif | |
| 	} else { /* Group move necessary */ | |
| 	    if (move->flags == MTR_NEWNODE) { | |
| 		ddDissolveGroup(table,(int)move->x,(int)move->y); | |
| 	    } else { | |
| 		res = ddGroupMoveBackward(table,(int)move->x,(int)move->y); | |
| 		if (!res) return(0); | |
| 	    } | |
| 	} | |
| 
 | |
|     } | |
| 
 | |
|     return(1); | |
| 
 | |
| } /* end of ddGroupSiftingBackward */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Merges groups in the %DD table. | |
|  | |
|   @details Creates a single group from low to high and adjusts the | |
|   index field of the tree node. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static void | |
| ddMergeGroups( | |
|   DdManager * table, | |
|   MtrNode * treenode, | |
|   int  low, | |
|   int  high) | |
| { | |
|     int i; | |
|     MtrNode *auxnode; | |
|     int saveindex; | |
|     int newindex; | |
| 
 | |
|     /* Merge all variables from low to high in one group, unless | |
|     ** this is the topmost group. In such a case we do not merge lest | |
|     ** we lose the symmetry information. */ | |
|     if (treenode != table->tree) { | |
| 	for (i = low; i < high; i++) | |
| 	    table->subtables[i].next = i+1; | |
| 	table->subtables[high].next = low; | |
|     } | |
| 
 | |
|     /* Adjust the index fields of the tree nodes. If a node is the | |
|     ** first child of its parent, then the parent may also need adjustment. */ | |
|     saveindex = treenode->index; | |
|     newindex = table->invperm[low]; | |
|     auxnode = treenode; | |
|     do { | |
| 	auxnode->index = newindex; | |
| 	if (auxnode->parent == NULL || | |
| 		(int) auxnode->parent->index != saveindex) | |
| 	    break; | |
| 	auxnode = auxnode->parent; | |
|     } while (1); | |
|     return; | |
| 
 | |
| } /* end of ddMergeGroups */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Dissolves a group in the %DD table. | |
|  | |
|   @details x and y are variables in a group to be cut in two. The cut | |
|   is to pass between x and y. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static void | |
| ddDissolveGroup( | |
|   DdManager * table, | |
|   int  x, | |
|   int  y) | |
| { | |
|     int topx; | |
|     int boty; | |
| 
 | |
|     /* find top and bottom of the two groups */ | |
|     boty = y; | |
|     while ((unsigned) boty < table->subtables[boty].next) | |
| 	boty = table->subtables[boty].next; | |
| 
 | |
|     topx = table->subtables[boty].next; | |
| 
 | |
|     table->subtables[boty].next = y; | |
|     table->subtables[x].next = topx; | |
| 
 | |
|     return; | |
| 
 | |
| } /* end of ddDissolveGroup */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Pretends to check two variables for aggregation. | |
|  | |
|   @return always 0. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddNoCheck( | |
|   DdManager * table, | |
|   int  x, | |
|   int  y) | |
| { | |
|     (void) table; /* avoid warning */ | |
|     (void) x;     /* avoid warning */ | |
|     (void) y;     /* avoid warning */ | |
|     return(0); | |
| 
 | |
| } /* end of ddNoCheck */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Checks two variables for aggregation. | |
|  | |
|   @details The check is based on the second difference of the number | |
|   of nodes as a function of the layer. If the second difference is | |
|   lower than a given threshold (typically negative) then the two | |
|   variables should be aggregated. | |
|  | |
|   @return 1 if the two variables pass the test; 0 otherwise. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddSecDiffCheck( | |
|   DdManager * table, | |
|   int  x, | |
|   int  y) | |
| { | |
|     double Nx,Nx_1; | |
|     double Sx; | |
|     double threshold; | |
|     int    xindex,yindex; | |
| 
 | |
|     if (x==0) return(0); | |
| 
 | |
| #ifdef DD_STATS | |
|     table->secdiffcalls++; | |
| #endif | |
|     Nx = (double) table->subtables[x].keys; | |
|     Nx_1 = (double) table->subtables[x-1].keys; | |
|     Sx = (table->subtables[y].keys/Nx) - (Nx/Nx_1); | |
| 
 | |
|     threshold = table->recomb / 100.0; | |
|     if (Sx < threshold) { | |
| 	xindex = table->invperm[x]; | |
| 	yindex = table->invperm[y]; | |
| 	if (cuddTestInteract(table,xindex,yindex)) { | |
| #if defined(DD_DEBUG) && defined(DD_VERBOSE) | |
| 	    (void) fprintf(table->out, | |
| 			   "Second difference for %d = %g Pos(%d)\n", | |
| 			   table->invperm[x],Sx,x); | |
| #endif | |
| #ifdef DD_STATS | |
| 	    table->secdiff++; | |
| #endif | |
| 	    return(1); | |
| 	} else { | |
| #ifdef DD_STATS | |
| 	    table->secdiffmisfire++; | |
| #endif | |
| 	    return(0); | |
| 	} | |
| 
 | |
|     } | |
|     return(0); | |
| 
 | |
| } /* end of ddSecDiffCheck */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Checks for extended symmetry of x and y. | |
|  | |
|   @return 1 in case of extended symmetry; 0 otherwise. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddExtSymmCheck( | |
|   DdManager * table, | |
|   int  x, | |
|   int  y) | |
| { | |
|     DdNode *f,*f0,*f1,*f01,*f00,*f11,*f10; | |
|     DdNode *one; | |
|     int comple;		/* f0 is complemented */ | |
|     int notproj;	/* f is not a projection function */ | |
|     int arccount;	/* number of arcs from layer x to layer y */ | |
|     int TotalRefCount;	/* total reference count of layer y minus 1 */ | |
|     int counter;	/* number of nodes of layer x that are allowed */ | |
| 			/* to violate extended symmetry conditions */ | |
|     int arccounter;	/* number of arcs into layer y that are allowed */ | |
| 			/* to come from layers other than x */ | |
|     int i; | |
|     int xindex; | |
|     int yindex; | |
|     int res; | |
|     int slots; | |
|     DdNodePtr *list; | |
|     DdNode *sentinel = &(table->sentinel); | |
| 
 | |
|     xindex = table->invperm[x]; | |
|     yindex = table->invperm[y]; | |
| 
 | |
|     /* If the two variables do not interact, we do not want to merge them. */ | |
|     if (!cuddTestInteract(table,xindex,yindex)) | |
| 	return(0); | |
| 
 | |
| #ifdef DD_DEBUG | |
|     /* Checks that x and y do not contain just the projection functions. | |
|     ** With the test on interaction, these test become redundant, | |
|     ** because an isolated projection function does not interact with | |
|     ** any other variable. | |
|     */ | |
|     if (table->subtables[x].keys == 1) { | |
| 	assert(table->vars[xindex]->ref != 1); | |
|     } | |
|     if (table->subtables[y].keys == 1) { | |
| 	assert(table->vars[yindex]->ref != 1); | |
|     } | |
| #endif | |
|  | |
| #ifdef DD_STATS | |
|     table->extsymmcalls++; | |
| #endif | |
|  | |
|     arccount = 0; | |
|     counter = (int) (table->subtables[x].keys * | |
| 	      (table->symmviolation/100.0) + 0.5); | |
|     one = DD_ONE(table); | |
| 
 | |
|     slots = table->subtables[x].slots; | |
|     list = table->subtables[x].nodelist; | |
|     for (i = 0; i < slots; i++) { | |
| 	f = list[i]; | |
| 	while (f != sentinel) { | |
| 	    /* Find f1, f0, f11, f10, f01, f00. */ | |
| 	    f1 = cuddT(f); | |
| 	    f0 = Cudd_Regular(cuddE(f)); | |
| 	    comple = Cudd_IsComplement(cuddE(f)); | |
| 	    notproj = f1 != one || f0 != one || f->ref != (DdHalfWord) 1; | |
| 	    if (f1->index == (unsigned) yindex) { | |
| 		arccount++; | |
| 		f11 = cuddT(f1); f10 = cuddE(f1); | |
| 	    } else { | |
| 		if ((int) f0->index != yindex) { | |
| 		    /* If f is an isolated projection function it is | |
| 		    ** allowed to bypass layer y. | |
| 		    */ | |
| 		    if (notproj) { | |
| 			if (counter == 0) | |
| 			    return(0); | |
| 			counter--; /* f bypasses layer y */ | |
| 		    } | |
| 		} | |
| 		f11 = f10 = f1; | |
| 	    } | |
| 	    if ((int) f0->index == yindex) { | |
| 		arccount++; | |
| 		f01 = cuddT(f0); f00 = cuddE(f0); | |
| 	    } else { | |
| 		f01 = f00 = f0; | |
| 	    } | |
| 	    if (comple) { | |
| 		f01 = Cudd_Not(f01); | |
| 		f00 = Cudd_Not(f00); | |
| 	    } | |
| 
 | |
| 	    /* Unless we are looking at a projection function | |
| 	    ** without external references except the one from the | |
| 	    ** table, we insist that f01 == f10 or f11 == f00 | |
| 	    */ | |
| 	    if (notproj) { | |
| 		if (f01 != f10 && f11 != f00) { | |
| 		    if (counter == 0) | |
| 			return(0); | |
| 		    counter--; | |
| 		} | |
| 	    } | |
| 
 | |
| 	    f = f->next; | |
| 	} /* while */ | |
|     } /* for */ | |
| 
 | |
|     /* Calculate the total reference counts of y */ | |
|     TotalRefCount = -1;	/* -1 for projection function */ | |
|     slots = table->subtables[y].slots; | |
|     list = table->subtables[y].nodelist; | |
|     for (i = 0; i < slots; i++) { | |
| 	f = list[i]; | |
| 	while (f != sentinel) { | |
| 	    TotalRefCount += f->ref; | |
| 	    f = f->next; | |
| 	} | |
|     } | |
| 
 | |
|     arccounter = (int) (table->subtables[y].keys * | |
| 		 (table->arcviolation/100.0) + 0.5); | |
|     res = arccount >= TotalRefCount - arccounter; | |
| 
 | |
| #if defined(DD_DEBUG) && defined(DD_VERBOSE) | |
|     if (res) { | |
| 	(void) fprintf(table->out, | |
| 		       "Found extended symmetry! x = %d\ty = %d\tPos(%d,%d)\n", | |
| 		       xindex,yindex,x,y); | |
|     } | |
| #endif | |
|  | |
| #ifdef DD_STATS | |
|     if (res) | |
| 	table->extsymm++; | |
| #endif | |
|     return(res); | |
| 
 | |
| } /* end ddExtSymmCheck */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Checks for grouping of x and y. | |
|  | |
|   @details This function is used for lazy sifting. | |
|  | |
|   @return 1 in case of grouping; 0 otherwise. | |
|  | |
|   @sideeffect None | |
|  | |
| */ | |
| static int | |
| ddVarGroupCheck( | |
|   DdManager * table, | |
|   int x, | |
|   int y) | |
| { | |
|     int xindex = table->invperm[x]; | |
|     int yindex = table->invperm[y]; | |
| 
 | |
|     if (Cudd_bddIsVarToBeUngrouped(table, xindex)) return(0); | |
| 
 | |
|     if (Cudd_bddReadPairIndex(table, xindex) == yindex) { | |
| 	if (ddIsVarHandled(table, xindex) || | |
| 	    ddIsVarHandled(table, yindex)) { | |
| 	    if (Cudd_bddIsVarToBeGrouped(table, xindex) || | |
| 		Cudd_bddIsVarToBeGrouped(table, yindex) ) { | |
| 		if (table->keys - table->isolated <= table->originalSize) { | |
| 		    return(1); | |
| 		} | |
| 	    } | |
| 	} | |
|     } | |
| 
 | |
|     return(0); | |
| 
 | |
| } /* end of ddVarGroupCheck */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Sets a variable to already handled. | |
|  | |
|   @details This function is used for lazy sifting. | |
|  | |
|   @sideeffect none | |
|  | |
| */ | |
| static int | |
| ddSetVarHandled( | |
|   DdManager *dd, | |
|   int index) | |
| { | |
|     if (index >= dd->size || index < 0) return(0); | |
|     dd->subtables[dd->perm[index]].varHandled = 1; | |
|     return(1); | |
| 
 | |
| } /* end of ddSetVarHandled */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Resets a variable to be processed. | |
|  | |
|   @details This function is used for lazy sifting. | |
|  | |
|   @sideeffect none | |
|  | |
| */ | |
| static int | |
| ddResetVarHandled( | |
|   DdManager *dd, | |
|   int index) | |
| { | |
|     if (index >= dd->size || index < 0) return(0); | |
|     dd->subtables[dd->perm[index]].varHandled = 0; | |
|     return(1); | |
| 
 | |
| } /* end of ddResetVarHandled */ | |
| 
 | |
| 
 | |
| /** | |
|   @brief Checks whether a variables is already handled. | |
|  | |
|   @details This function is used for lazy sifting. | |
|  | |
|   @sideeffect none | |
|  | |
| */ | |
| static int | |
| ddIsVarHandled( | |
|   DdManager *dd, | |
|   int index) | |
| { | |
|     if (index >= dd->size || index < 0) return(-1); | |
|     return dd->subtables[dd->perm[index]].varHandled; | |
| 
 | |
| } /* end of ddIsVarHandled */
 |