You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							182 lines
						
					
					
						
							5.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							182 lines
						
					
					
						
							5.3 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #ifndef EIGEN_TESTSPARSE_H | |
| #define EIGEN_TESTSPARSE_H | |
|  | |
| #define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET | |
|  | |
| #include "main.h" | |
|  | |
| #if EIGEN_GNUC_AT_LEAST(4,0) && !defined __ICC && !defined(__clang__) | |
|  | |
| #ifdef min | |
| #undef min | |
| #endif | |
|  | |
| #ifdef max | |
| #undef max | |
| #endif | |
|  | |
| #include <tr1/unordered_map> | |
| #define EIGEN_UNORDERED_MAP_SUPPORT | |
| namespace std { | |
|   using std::tr1::unordered_map; | |
| } | |
| #endif | |
|  | |
| #ifdef EIGEN_GOOGLEHASH_SUPPORT | |
|   #include <google/sparse_hash_map> | |
| #endif | |
|  | |
| #include <Eigen/Cholesky> | |
| #include <Eigen/LU> | |
| #include <Eigen/Sparse> | |
|  | |
| enum { | |
|   ForceNonZeroDiag = 1, | |
|   MakeLowerTriangular = 2, | |
|   MakeUpperTriangular = 4, | |
|   ForceRealDiag = 8 | |
| }; | |
| 
 | |
| /* Initializes both a sparse and dense matrix with same random values, | |
|  * and a ratio of \a density non zero entries. | |
|  * \param flags is a union of ForceNonZeroDiag, MakeLowerTriangular and MakeUpperTriangular | |
|  *        allowing to control the shape of the matrix. | |
|  * \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero, | |
|  *        and zero coefficients respectively. | |
|  */ | |
| template<typename Scalar,int Opt1,int Opt2,typename Index> void | |
| initSparse(double density, | |
|            Matrix<Scalar,Dynamic,Dynamic,Opt1>& refMat, | |
|            SparseMatrix<Scalar,Opt2,Index>& sparseMat, | |
|            int flags = 0, | |
|            std::vector<Vector2i>* zeroCoords = 0, | |
|            std::vector<Vector2i>* nonzeroCoords = 0) | |
| { | |
|   enum { IsRowMajor = SparseMatrix<Scalar,Opt2,Index>::IsRowMajor }; | |
|   sparseMat.setZero(); | |
|   //sparseMat.reserve(int(refMat.rows()*refMat.cols()*density)); | |
|   sparseMat.reserve(VectorXi::Constant(IsRowMajor ? refMat.rows() : refMat.cols(), int((1.5*density)*(IsRowMajor?refMat.cols():refMat.rows())))); | |
|    | |
|   for(int j=0; j<sparseMat.outerSize(); j++) | |
|   { | |
|     //sparseMat.startVec(j); | |
|     for(int i=0; i<sparseMat.innerSize(); i++) | |
|     { | |
|       int ai(i), aj(j); | |
|       if(IsRowMajor) | |
|         std::swap(ai,aj); | |
|       Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0); | |
|       if ((flags&ForceNonZeroDiag) && (i==j)) | |
|       { | |
|         v = internal::random<Scalar>()*Scalar(3.); | |
|         v = v*v + Scalar(5.); | |
|       } | |
|       if ((flags & MakeLowerTriangular) && aj>ai) | |
|         v = Scalar(0); | |
|       else if ((flags & MakeUpperTriangular) && aj<ai) | |
|         v = Scalar(0); | |
| 
 | |
|       if ((flags&ForceRealDiag) && (i==j)) | |
|         v = internal::real(v); | |
| 
 | |
|       if (v!=Scalar(0)) | |
|       { | |
|         //sparseMat.insertBackByOuterInner(j,i) = v; | |
|         sparseMat.insertByOuterInner(j,i) = v; | |
|         if (nonzeroCoords) | |
|           nonzeroCoords->push_back(Vector2i(ai,aj)); | |
|       } | |
|       else if (zeroCoords) | |
|       { | |
|         zeroCoords->push_back(Vector2i(ai,aj)); | |
|       } | |
|       refMat(ai,aj) = v; | |
|     } | |
|   } | |
|   //sparseMat.finalize(); | |
| } | |
| 
 | |
| template<typename Scalar,int Opt1,int Opt2,typename Index> void | |
| initSparse(double density, | |
|            Matrix<Scalar,Dynamic,Dynamic, Opt1>& refMat, | |
|            DynamicSparseMatrix<Scalar, Opt2, Index>& sparseMat, | |
|            int flags = 0, | |
|            std::vector<Vector2i>* zeroCoords = 0, | |
|            std::vector<Vector2i>* nonzeroCoords = 0) | |
| { | |
|   enum { IsRowMajor = DynamicSparseMatrix<Scalar,Opt2,Index>::IsRowMajor }; | |
|   sparseMat.setZero(); | |
|   sparseMat.reserve(int(refMat.rows()*refMat.cols()*density)); | |
|   for(int j=0; j<sparseMat.outerSize(); j++) | |
|   { | |
|     sparseMat.startVec(j); // not needed for DynamicSparseMatrix | |
|     for(int i=0; i<sparseMat.innerSize(); i++) | |
|     { | |
|       int ai(i), aj(j); | |
|       if(IsRowMajor) | |
|         std::swap(ai,aj); | |
|       Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0); | |
|       if ((flags&ForceNonZeroDiag) && (i==j)) | |
|       { | |
|         v = internal::random<Scalar>()*Scalar(3.); | |
|         v = v*v + Scalar(5.); | |
|       } | |
|       if ((flags & MakeLowerTriangular) && aj>ai) | |
|         v = Scalar(0); | |
|       else if ((flags & MakeUpperTriangular) && aj<ai) | |
|         v = Scalar(0); | |
| 
 | |
|       if ((flags&ForceRealDiag) && (i==j)) | |
|         v = internal::real(v); | |
| 
 | |
|       if (v!=Scalar(0)) | |
|       { | |
|         sparseMat.insertBackByOuterInner(j,i) = v; | |
|         if (nonzeroCoords) | |
|           nonzeroCoords->push_back(Vector2i(ai,aj)); | |
|       } | |
|       else if (zeroCoords) | |
|       { | |
|         zeroCoords->push_back(Vector2i(ai,aj)); | |
|       } | |
|       refMat(ai,aj) = v; | |
|     } | |
|   } | |
|   sparseMat.finalize(); | |
| } | |
| 
 | |
| template<typename Scalar> void | |
| initSparse(double density, | |
|            Matrix<Scalar,Dynamic,1>& refVec, | |
|            SparseVector<Scalar>& sparseVec, | |
|            std::vector<int>* zeroCoords = 0, | |
|            std::vector<int>* nonzeroCoords = 0) | |
| { | |
|   sparseVec.reserve(int(refVec.size()*density)); | |
|   sparseVec.setZero(); | |
|   for(int i=0; i<refVec.size(); i++) | |
|   { | |
|     Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0); | |
|     if (v!=Scalar(0)) | |
|     { | |
|       sparseVec.insertBack(i) = v; | |
|       if (nonzeroCoords) | |
|         nonzeroCoords->push_back(i); | |
|     } | |
|     else if (zeroCoords) | |
|         zeroCoords->push_back(i); | |
|     refVec[i] = v; | |
|   } | |
| } | |
| 
 | |
| #include <unsupported/Eigen/SparseExtra> | |
| #endif // EIGEN_TESTSPARSE_H
 |