You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							112 lines
						
					
					
						
							4.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							112 lines
						
					
					
						
							4.3 KiB
						
					
					
				
								/*===========================================================================
							 | 
						|
								 
							 | 
						|
								 Copyright (C) 2007-2012 Yves Renard, Julien Pommier.
							 | 
						|
								 
							 | 
						|
								 This file is a part of GETFEM++
							 | 
						|
								 
							 | 
						|
								 Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
							 | 
						|
								 under  the  terms  of the  GNU  Lesser General Public License as published
							 | 
						|
								 by  the  Free Software Foundation;  either version 3 of the License,  or
							 | 
						|
								 (at your option) any later version along with the GCC Runtime Library
							 | 
						|
								 Exception either version 3.1 or (at your option) any later version.
							 | 
						|
								 This program  is  distributed  in  the  hope  that it will be useful,  but
							 | 
						|
								 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
							 | 
						|
								 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
							 | 
						|
								 License and GCC Runtime Library Exception for more details.
							 | 
						|
								 You  should  have received a copy of the GNU Lesser General Public License
							 | 
						|
								 along  with  this program;  if not, write to the Free Software Foundation,
							 | 
						|
								 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
							 | 
						|
								 
							 | 
						|
								===========================================================================*/
							 | 
						|
								// RECTANGULAR_MATRIX_PARAM
							 | 
						|
								// RECTANGULAR_MATRIX_PARAM;
							 | 
						|
								// RECTANGULAR_MATRIX_PARAM;
							 | 
						|
								// ENDPARAM;
							 | 
						|
								
							 | 
						|
								#include "gmm/gmm_kernel.h"
							 | 
						|
								
							 | 
						|
								using std::endl; using std::cout; using std::cerr;
							 | 
						|
								using std::ends; using std::cin;
							 | 
						|
								using gmm::size_type;
							 | 
						|
								
							 | 
						|
								template <typename MAT1, typename MAT2, typename MAT3>
							 | 
						|
								bool test_procedure(const MAT1 &m1_, const MAT2 &m2_, const MAT3 &m3_) {
							 | 
						|
								  MAT1  &m1 = const_cast<MAT1  &>(m1_);
							 | 
						|
								  MAT2  &m2 = const_cast<MAT2  &>(m2_);
							 | 
						|
								  MAT3  &m3 = const_cast<MAT3  &>(m3_);
							 | 
						|
								  typedef typename gmm::linalg_traits<MAT1>::value_type T;
							 | 
						|
								  typedef typename gmm::number_traits<T>::magnitude_type R;
							 | 
						|
								  R prec = gmm::default_tol(R());
							 | 
						|
								  static size_type nb_iter(0);
							 | 
						|
								  ++nb_iter;
							 | 
						|
								
							 | 
						|
								  size_type k = gmm::mat_nrows(m1);
							 | 
						|
								  size_type l = std::max(gmm::mat_ncols(m1), gmm::mat_nrows(m2));
							 | 
						|
								  size_type m = std::max(gmm::mat_ncols(m2), gmm::mat_nrows(m3));
							 | 
						|
								  size_type n = gmm::mat_ncols(m3);
							 | 
						|
								
							 | 
						|
								  gmm::dense_matrix<T> m4(k, m);
							 | 
						|
								  gmm::mult(m1, m2, m4);
							 | 
						|
								
							 | 
						|
								  R error = mat_euclidean_norm(m4)
							 | 
						|
								    - mat_euclidean_norm(m1) * mat_euclidean_norm(m2);
							 | 
						|
								  if (error > prec * R(100))
							 | 
						|
								    GMM_ASSERT1(false, "Inconsistence of fröbenius norm" << error);
							 | 
						|
								
							 | 
						|
								  error = mat_norm1(m4) - mat_norm1(m1) * mat_norm1(m2);
							 | 
						|
								  if (error > prec * R(100))
							 | 
						|
								    GMM_ASSERT1(false, "Inconsistence of norm1 for matrices"
							 | 
						|
									      << error);
							 | 
						|
								  error = mat_norminf(m4) - mat_norminf(m1) * mat_norminf(m2);
							 | 
						|
								  if (error > prec * R(100))
							 | 
						|
								    GMM_ASSERT1(false, "Inconsistence of norminf for matrices"
							 | 
						|
										<< error);
							 | 
						|
								
							 | 
						|
								  size_type mm = std::min(m, k);
							 | 
						|
								  size_type nn = std::min(n, m);
							 | 
						|
								
							 | 
						|
								  gmm::dense_matrix<T> m1bis(mm, l), m2bis(l, nn), m3bis(mm, nn);
							 | 
						|
								  gmm::copy(gmm::sub_matrix(m1, gmm::sub_interval(0,mm),
							 | 
						|
											    gmm::sub_interval(0,l)), m1bis);
							 | 
						|
								  gmm::copy(gmm::sub_matrix(m2, gmm::sub_interval(0,l),
							 | 
						|
											    gmm::sub_interval(0,nn)), m2bis);
							 | 
						|
								  gmm::mult(m1bis, m2bis, m3bis);
							 | 
						|
								  gmm::mult(gmm::sub_matrix(m1, gmm::sub_interval(0,mm),
							 | 
						|
											    gmm::sub_interval(0,l)),
							 | 
						|
									    gmm::sub_matrix(m2, gmm::sub_interval(0,l),
							 | 
						|
											    gmm::sub_interval(0,nn)),
							 | 
						|
									    gmm::sub_matrix(m3, gmm::sub_interval(0,mm),
							 | 
						|
											    gmm::sub_interval(0,nn)));
							 | 
						|
								  gmm::add(gmm::scaled(m3bis, T(-1)),
							 | 
						|
									   gmm::sub_matrix(m3, gmm::sub_interval(0,mm),
							 | 
						|
											   gmm::sub_interval(0,nn)));
							 | 
						|
								  
							 | 
						|
								  error = gmm::mat_euclidean_norm(gmm::sub_matrix(m3, gmm::sub_interval(0,mm),
							 | 
						|
													   gmm::sub_interval(0,nn)));
							 | 
						|
								
							 | 
						|
								  if (!(error <= prec * R(10000)))
							 | 
						|
								    GMM_ASSERT1(false, "Error too large: " << error);
							 | 
						|
								
							 | 
						|
								  if (nn <= gmm::mat_nrows(m3) && mm <= gmm::mat_ncols(m3)) {
							 | 
						|
								    
							 | 
						|
								    gmm::scale(m1, T(2));
							 | 
						|
								    gmm::mult(gmm::scaled(gmm::sub_matrix(m1, gmm::sub_interval(0,mm),
							 | 
						|
													  gmm::sub_interval(0,l)), T(-1)),
							 | 
						|
									      gmm::sub_matrix(m2, gmm::sub_interval(0,l),
							 | 
						|
											      gmm::sub_interval(0,nn)),
							 | 
						|
									      gmm::sub_matrix(gmm::transposed(m3), gmm::sub_interval(0,mm),
							 | 
						|
											      gmm::sub_interval(0,nn)));
							 | 
						|
								    gmm::add(gmm::scaled(m3bis, T(2)),
							 | 
						|
									     gmm::transposed(gmm::sub_matrix(m3, gmm::sub_interval(0,nn),
							 | 
						|
													     gmm::sub_interval(0,mm))));
							 | 
						|
								    
							 | 
						|
								    error = gmm::mat_euclidean_norm(gmm::sub_matrix(m3, gmm::sub_interval(0,nn),
							 | 
						|
													   gmm::sub_interval(0,mm)));
							 | 
						|
								    
							 | 
						|
								    if (!(error <= prec * R(10000)))
							 | 
						|
								      GMM_ASSERT1(false, "Error too large: " << error);
							 | 
						|
								  }
							 | 
						|
								  if (nb_iter == 100) return true;
							 | 
						|
								  return false;
							 | 
						|
								  
							 | 
						|
								}
							 |