You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							125 lines
						
					
					
						
							3.9 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							125 lines
						
					
					
						
							3.9 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "sparse.h"
							 | 
						|
								
							 | 
						|
								template<typename Scalar,typename Index> void sparse_vector(int rows, int cols)
							 | 
						|
								{
							 | 
						|
								  double densityMat = (std::max)(8./(rows*cols), 0.01);
							 | 
						|
								  double densityVec = (std::max)(8./float(rows), 0.1);
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> DenseVector;
							 | 
						|
								  typedef SparseVector<Scalar,0,Index> SparseVectorType;
							 | 
						|
								  typedef SparseMatrix<Scalar,0,Index> SparseMatrixType;
							 | 
						|
								  Scalar eps = 1e-6;
							 | 
						|
								
							 | 
						|
								  SparseMatrixType m1(rows,rows);
							 | 
						|
								  SparseVectorType v1(rows), v2(rows), v3(rows);
							 | 
						|
								  DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								  DenseVector refV1 = DenseVector::Random(rows),
							 | 
						|
								              refV2 = DenseVector::Random(rows),
							 | 
						|
								              refV3 = DenseVector::Random(rows);
							 | 
						|
								
							 | 
						|
								  std::vector<int> zerocoords, nonzerocoords;
							 | 
						|
								  initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords);
							 | 
						|
								  initSparse<Scalar>(densityMat, refM1, m1);
							 | 
						|
								
							 | 
						|
								  initSparse<Scalar>(densityVec, refV2, v2);
							 | 
						|
								  initSparse<Scalar>(densityVec, refV3, v3);
							 | 
						|
								
							 | 
						|
								  Scalar s1 = internal::random<Scalar>();
							 | 
						|
								
							 | 
						|
								  // test coeff and coeffRef
							 | 
						|
								  for (unsigned int i=0; i<zerocoords.size(); ++i)
							 | 
						|
								  {
							 | 
						|
								    VERIFY_IS_MUCH_SMALLER_THAN( v1.coeff(zerocoords[i]), eps );
							 | 
						|
								    //VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 );
							 | 
						|
								  }
							 | 
						|
								  {
							 | 
						|
								    VERIFY(int(nonzerocoords.size()) == v1.nonZeros());
							 | 
						|
								    int j=0;
							 | 
						|
								    for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j)
							 | 
						|
								    {
							 | 
						|
								      VERIFY(nonzerocoords[j]==it.index());
							 | 
						|
								      VERIFY(it.value()==v1.coeff(it.index()));
							 | 
						|
								      VERIFY(it.value()==refV1.coeff(it.index()));
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  VERIFY_IS_APPROX(v1, refV1);
							 | 
						|
								  
							 | 
						|
								  // test coeffRef with reallocation
							 | 
						|
								  {
							 | 
						|
								    SparseVectorType v4(rows);
							 | 
						|
								    DenseVector v5 = DenseVector::Zero(rows);
							 | 
						|
								    for(int k=0; k<rows; ++k)
							 | 
						|
								    {
							 | 
						|
								      int i = internal::random<int>(0,rows-1);
							 | 
						|
								      Scalar v = internal::random<Scalar>();
							 | 
						|
								      v4.coeffRef(i) += v;
							 | 
						|
								      v5.coeffRef(i) += v;
							 | 
						|
								    }
							 | 
						|
								    VERIFY_IS_APPROX(v4,v5);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  v1.coeffRef(nonzerocoords[0]) = Scalar(5);
							 | 
						|
								  refV1.coeffRef(nonzerocoords[0]) = Scalar(5);
							 | 
						|
								  VERIFY_IS_APPROX(v1, refV1);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(v1+v2, refV1+refV2);
							 | 
						|
								  VERIFY_IS_APPROX(v1+v2+v3, refV1+refV2+refV3);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(v1*s1-v2, refV1*s1-refV2);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(v1*=s1, refV1*=s1);
							 | 
						|
								  VERIFY_IS_APPROX(v1/=s1, refV1/=s1);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(v1+=v2, refV1+=refV2);
							 | 
						|
								  VERIFY_IS_APPROX(v1-=v2, refV1-=refV2);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2));
							 | 
						|
								  VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2));
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(m1*v2, refM1*refV2);
							 | 
						|
								  VERIFY_IS_APPROX(v1.dot(m1*v2), refV1.dot(refM1*refV2));
							 | 
						|
								  int i = internal::random<int>(0,rows-1);
							 | 
						|
								  VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i)));
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm());
							 | 
						|
								  
							 | 
						|
								  VERIFY_IS_APPROX(v1.blueNorm(), refV1.blueNorm());
							 | 
						|
								
							 | 
						|
								  // test aliasing
							 | 
						|
								  VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1));
							 | 
						|
								  VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval()));
							 | 
						|
								  VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1));
							 | 
						|
								  
							 | 
						|
								  // sparse matrix to sparse vector
							 | 
						|
								  SparseMatrixType mv1;
							 | 
						|
								  VERIFY_IS_APPROX((mv1=v1),v1);
							 | 
						|
								  VERIFY_IS_APPROX(mv1,(v1=mv1));
							 | 
						|
								  VERIFY_IS_APPROX(mv1,(v1=mv1.transpose()));
							 | 
						|
								  
							 | 
						|
								  // check copy to dense vector with transpose
							 | 
						|
								  refV3.resize(0);
							 | 
						|
								  VERIFY_IS_APPROX(refV3 = v1.transpose(),v1.toDense()); 
							 | 
						|
								  VERIFY_IS_APPROX(DenseVector(v1),v1.toDense()); 
							 | 
						|
								
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_sparse_vector()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1(( sparse_vector<double,int>(8, 8) ));
							 | 
						|
								    CALL_SUBTEST_2(( sparse_vector<std::complex<double>, int>(16, 16) ));
							 | 
						|
								    CALL_SUBTEST_1(( sparse_vector<double,long int>(299, 535) ));
							 | 
						|
								    CALL_SUBTEST_1(( sparse_vector<double,short>(299, 535) ));
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 |