You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							531 lines
						
					
					
						
							19 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							531 lines
						
					
					
						
							19 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
							 | 
						|
								// Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								static long g_realloc_count = 0;
							 | 
						|
								#define STORMEIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++;
							 | 
						|
								
							 | 
						|
								#include "sparse.h"
							 | 
						|
								
							 | 
						|
								template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
							 | 
						|
								{
							 | 
						|
								  typedef typename SparseMatrixType::StorageIndex StorageIndex;
							 | 
						|
								  typedef Matrix<StorageIndex,2,1> Vector2;
							 | 
						|
								  
							 | 
						|
								  const Index rows = ref.rows();
							 | 
						|
								  const Index cols = ref.cols();
							 | 
						|
								  const Index inner = ref.innerSize();
							 | 
						|
								  const Index outer = ref.outerSize();
							 | 
						|
								
							 | 
						|
								  typedef typename SparseMatrixType::Scalar Scalar;
							 | 
						|
								  enum { Flags = SparseMatrixType::Flags };
							 | 
						|
								
							 | 
						|
								  double density = (std::max)(8./(rows*cols), 0.01);
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> DenseVector;
							 | 
						|
								  Scalar eps = 1e-6;
							 | 
						|
								
							 | 
						|
								  Scalar s1 = internal::random<Scalar>();
							 | 
						|
								  {
							 | 
						|
								    SparseMatrixType m(rows, cols);
							 | 
						|
								    DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
							 | 
						|
								    DenseVector vec1 = DenseVector::Random(rows);
							 | 
						|
								
							 | 
						|
								    std::vector<Vector2> zeroCoords;
							 | 
						|
								    std::vector<Vector2> nonzeroCoords;
							 | 
						|
								    initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
							 | 
						|
								
							 | 
						|
								    // test coeff and coeffRef
							 | 
						|
								    for (std::size_t i=0; i<zeroCoords.size(); ++i)
							 | 
						|
								    {
							 | 
						|
								      VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
							 | 
						|
								      if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
							 | 
						|
								        VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 );
							 | 
						|
								    }
							 | 
						|
								    VERIFY_IS_APPROX(m, refMat);
							 | 
						|
								
							 | 
						|
								    if(!nonzeroCoords.empty()) {
							 | 
						|
								      m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
							 | 
						|
								      refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m, refMat);
							 | 
						|
								
							 | 
						|
								      // test assertion
							 | 
						|
								      VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
							 | 
						|
								      VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // test insert (inner random)
							 | 
						|
								    {
							 | 
						|
								      DenseMatrix m1(rows,cols);
							 | 
						|
								      m1.setZero();
							 | 
						|
								      SparseMatrixType m2(rows,cols);
							 | 
						|
								      bool call_reserve = internal::random<int>()%2;
							 | 
						|
								      Index nnz = internal::random<int>(1,int(rows)/2);
							 | 
						|
								      if(call_reserve)
							 | 
						|
								      {
							 | 
						|
								        if(internal::random<int>()%2)
							 | 
						|
								          m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz)));
							 | 
						|
								        else
							 | 
						|
								          m2.reserve(m2.outerSize() * nnz);
							 | 
						|
								      }
							 | 
						|
								      g_realloc_count = 0;
							 | 
						|
								      for (Index j=0; j<cols; ++j)
							 | 
						|
								      {
							 | 
						|
								        for (Index k=0; k<nnz; ++k)
							 | 
						|
								        {
							 | 
						|
								          Index i = internal::random<Index>(0,rows-1);
							 | 
						|
								          if (m1.coeff(i,j)==Scalar(0))
							 | 
						|
								            m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								      
							 | 
						|
								      if(call_reserve && !SparseMatrixType::IsRowMajor)
							 | 
						|
								      {
							 | 
						|
								        VERIFY(g_realloc_count==0);
							 | 
						|
								      }
							 | 
						|
								      
							 | 
						|
								      m2.finalize();
							 | 
						|
								      VERIFY_IS_APPROX(m2,m1);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // test insert (fully random)
							 | 
						|
								    {
							 | 
						|
								      DenseMatrix m1(rows,cols);
							 | 
						|
								      m1.setZero();
							 | 
						|
								      SparseMatrixType m2(rows,cols);
							 | 
						|
								      if(internal::random<int>()%2)
							 | 
						|
								        m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
							 | 
						|
								      for (int k=0; k<rows*cols; ++k)
							 | 
						|
								      {
							 | 
						|
								        Index i = internal::random<Index>(0,rows-1);
							 | 
						|
								        Index j = internal::random<Index>(0,cols-1);
							 | 
						|
								        if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
							 | 
						|
								          m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
							 | 
						|
								        else
							 | 
						|
								        {
							 | 
						|
								          Scalar v = internal::random<Scalar>();
							 | 
						|
								          m2.coeffRef(i,j) += v;
							 | 
						|
								          m1(i,j) += v;
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								      VERIFY_IS_APPROX(m2,m1);
							 | 
						|
								    }
							 | 
						|
								    
							 | 
						|
								    // test insert (un-compressed)
							 | 
						|
								    for(int mode=0;mode<4;++mode)
							 | 
						|
								    {
							 | 
						|
								      DenseMatrix m1(rows,cols);
							 | 
						|
								      m1.setZero();
							 | 
						|
								      SparseMatrixType m2(rows,cols);
							 | 
						|
								      VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8)));
							 | 
						|
								      m2.reserve(r);
							 | 
						|
								      for (Index k=0; k<rows*cols; ++k)
							 | 
						|
								      {
							 | 
						|
								        Index i = internal::random<Index>(0,rows-1);
							 | 
						|
								        Index j = internal::random<Index>(0,cols-1);
							 | 
						|
								        if (m1.coeff(i,j)==Scalar(0))
							 | 
						|
								          m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
							 | 
						|
								        if(mode==3)
							 | 
						|
								          m2.reserve(r);
							 | 
						|
								      }
							 | 
						|
								      if(internal::random<int>()%2)
							 | 
						|
								        m2.makeCompressed();
							 | 
						|
								      VERIFY_IS_APPROX(m2,m1);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								  // test basic computations
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refM1 = DenseMatrix::Zero(rows, cols);
							 | 
						|
								    DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
							 | 
						|
								    DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
							 | 
						|
								    DenseMatrix refM4 = DenseMatrix::Zero(rows, cols);
							 | 
						|
								    SparseMatrixType m1(rows, cols);
							 | 
						|
								    SparseMatrixType m2(rows, cols);
							 | 
						|
								    SparseMatrixType m3(rows, cols);
							 | 
						|
								    SparseMatrixType m4(rows, cols);
							 | 
						|
								    initSparse<Scalar>(density, refM1, m1);
							 | 
						|
								    initSparse<Scalar>(density, refM2, m2);
							 | 
						|
								    initSparse<Scalar>(density, refM3, m3);
							 | 
						|
								    initSparse<Scalar>(density, refM4, m4);
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m1*s1, refM1*s1);
							 | 
						|
								    VERIFY_IS_APPROX(m1+m2, refM1+refM2);
							 | 
						|
								    VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
							 | 
						|
								    VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
							 | 
						|
								    VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
							 | 
						|
								    VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
							 | 
						|
								    VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
							 | 
						|
								
							 | 
						|
								    if(SparseMatrixType::IsRowMajor)
							 | 
						|
								      VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
							 | 
						|
								    else
							 | 
						|
								      VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0)));
							 | 
						|
								    
							 | 
						|
								    DenseVector rv = DenseVector::Random(m1.cols());
							 | 
						|
								    DenseVector cv = DenseVector::Random(m1.rows());
							 | 
						|
								    Index r = internal::random<Index>(0,m1.rows()-2);
							 | 
						|
								    Index c = internal::random<Index>(0,m1.cols()-1);
							 | 
						|
								    VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv));
							 | 
						|
								    VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv));
							 | 
						|
								    VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv));
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
							 | 
						|
								    VERIFY_IS_APPROX(m1.real(), refM1.real());
							 | 
						|
								
							 | 
						|
								    refM4.setRandom();
							 | 
						|
								    // sparse cwise* dense
							 | 
						|
								    VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
							 | 
						|
								    // dense cwise* sparse
							 | 
						|
								    VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3));
							 | 
						|
								//     VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
							 | 
						|
								
							 | 
						|
								    // test aliasing
							 | 
						|
								    VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
							 | 
						|
								    VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
							 | 
						|
								    VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
							 | 
						|
								    VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test transpose
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
							 | 
						|
								    SparseMatrixType m2(rows, cols);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
							 | 
						|
								    VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
							 | 
						|
								    
							 | 
						|
								    // check isApprox handles opposite storage order
							 | 
						|
								    typename Transpose<SparseMatrixType>::PlainObject m3(m2);
							 | 
						|
								    VERIFY(m2.isApprox(m3));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test prune
							 | 
						|
								  {
							 | 
						|
								    SparseMatrixType m2(rows, cols);
							 | 
						|
								    DenseMatrix refM2(rows, cols);
							 | 
						|
								    refM2.setZero();
							 | 
						|
								    int countFalseNonZero = 0;
							 | 
						|
								    int countTrueNonZero = 0;
							 | 
						|
								    m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize())));
							 | 
						|
								    for (Index j=0; j<m2.cols(); ++j)
							 | 
						|
								    {
							 | 
						|
								      for (Index i=0; i<m2.rows(); ++i)
							 | 
						|
								      {
							 | 
						|
								        float x = internal::random<float>(0,1);
							 | 
						|
								        if (x<0.1)
							 | 
						|
								        {
							 | 
						|
								          // do nothing
							 | 
						|
								        }
							 | 
						|
								        else if (x<0.5)
							 | 
						|
								        {
							 | 
						|
								          countFalseNonZero++;
							 | 
						|
								          m2.insert(i,j) = Scalar(0);
							 | 
						|
								        }
							 | 
						|
								        else
							 | 
						|
								        {
							 | 
						|
								          countTrueNonZero++;
							 | 
						|
								          m2.insert(i,j) = Scalar(1);
							 | 
						|
								          refM2(i,j) = Scalar(1);
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								    if(internal::random<bool>())
							 | 
						|
								      m2.makeCompressed();
							 | 
						|
								    VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
							 | 
						|
								    if(countTrueNonZero>0)
							 | 
						|
								      VERIFY_IS_APPROX(m2, refM2);
							 | 
						|
								    m2.prune(Scalar(1));
							 | 
						|
								    VERIFY(countTrueNonZero==m2.nonZeros());
							 | 
						|
								    VERIFY_IS_APPROX(m2, refM2);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test setFromTriplets
							 | 
						|
								  {
							 | 
						|
								    typedef Triplet<Scalar,StorageIndex> TripletType;
							 | 
						|
								    std::vector<TripletType> triplets;
							 | 
						|
								    Index ntriplets = rows*cols;
							 | 
						|
								    triplets.reserve(ntriplets);
							 | 
						|
								    DenseMatrix refMat_sum  = DenseMatrix::Zero(rows,cols);
							 | 
						|
								    DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols);
							 | 
						|
								    DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols);
							 | 
						|
								
							 | 
						|
								    for(Index i=0;i<ntriplets;++i)
							 | 
						|
								    {
							 | 
						|
								      StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1));
							 | 
						|
								      StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1));
							 | 
						|
								      Scalar v = internal::random<Scalar>();
							 | 
						|
								      triplets.push_back(TripletType(r,c,v));
							 | 
						|
								      refMat_sum(r,c) += v;
							 | 
						|
								      if(std::abs(refMat_prod(r,c))==0)
							 | 
						|
								        refMat_prod(r,c) = v;
							 | 
						|
								      else
							 | 
						|
								        refMat_prod(r,c) *= v;
							 | 
						|
								      refMat_last(r,c) = v;
							 | 
						|
								    }
							 | 
						|
								    SparseMatrixType m(rows,cols);
							 | 
						|
								    m.setFromTriplets(triplets.begin(), triplets.end());
							 | 
						|
								    VERIFY_IS_APPROX(m, refMat_sum);
							 | 
						|
								
							 | 
						|
								    m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>());
							 | 
						|
								    VERIFY_IS_APPROX(m, refMat_prod);
							 | 
						|
								#if (defined(__cplusplus) && __cplusplus >= 201103L)
							 | 
						|
								    m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; });
							 | 
						|
								    VERIFY_IS_APPROX(m, refMat_last);
							 | 
						|
								#endif
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  // test Map
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
							 | 
						|
								    SparseMatrixType m2(rows, cols), m3(rows, cols);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    initSparse<Scalar>(density, refMat3, m3);
							 | 
						|
								    {
							 | 
						|
								      Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
							 | 
						|
								      Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
							 | 
						|
								      VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
							 | 
						|
								      VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
							 | 
						|
								    }
							 | 
						|
								    {
							 | 
						|
								      MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
							 | 
						|
								      MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
							 | 
						|
								      VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
							 | 
						|
								      VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test triangularView
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
							 | 
						|
								    SparseMatrixType m2(rows, cols), m3(rows, cols);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    refMat3 = refMat2.template triangularView<Lower>();
							 | 
						|
								    m3 = m2.template triangularView<Lower>();
							 | 
						|
								    VERIFY_IS_APPROX(m3, refMat3);
							 | 
						|
								
							 | 
						|
								    refMat3 = refMat2.template triangularView<Upper>();
							 | 
						|
								    m3 = m2.template triangularView<Upper>();
							 | 
						|
								    VERIFY_IS_APPROX(m3, refMat3);
							 | 
						|
								
							 | 
						|
								    if(inner>=outer) // FIXME this should be implemented for outer>inner as well
							 | 
						|
								    {
							 | 
						|
								      refMat3 = refMat2.template triangularView<UnitUpper>();
							 | 
						|
								      m3 = m2.template triangularView<UnitUpper>();
							 | 
						|
								      VERIFY_IS_APPROX(m3, refMat3);
							 | 
						|
								
							 | 
						|
								      refMat3 = refMat2.template triangularView<UnitLower>();
							 | 
						|
								      m3 = m2.template triangularView<UnitLower>();
							 | 
						|
								      VERIFY_IS_APPROX(m3, refMat3);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    refMat3 = refMat2.template triangularView<StrictlyUpper>();
							 | 
						|
								    m3 = m2.template triangularView<StrictlyUpper>();
							 | 
						|
								    VERIFY_IS_APPROX(m3, refMat3);
							 | 
						|
								
							 | 
						|
								    refMat3 = refMat2.template triangularView<StrictlyLower>();
							 | 
						|
								    m3 = m2.template triangularView<StrictlyLower>();
							 | 
						|
								    VERIFY_IS_APPROX(m3, refMat3);
							 | 
						|
								
							 | 
						|
								    // check sparse-traingular to dense
							 | 
						|
								    refMat3 = m2.template triangularView<StrictlyUpper>();
							 | 
						|
								    VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>()));
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  // test selfadjointView
							 | 
						|
								  if(!SparseMatrixType::IsRowMajor)
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
							 | 
						|
								    SparseMatrixType m2(rows, rows), m3(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    refMat3 = refMat2.template selfadjointView<Lower>();
							 | 
						|
								    m3 = m2.template selfadjointView<Lower>();
							 | 
						|
								    VERIFY_IS_APPROX(m3, refMat3);
							 | 
						|
								
							 | 
						|
								    // selfadjointView only works for square matrices:
							 | 
						|
								    SparseMatrixType m4(rows, rows+1);
							 | 
						|
								    VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>());
							 | 
						|
								    VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>());
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  // test sparseView
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    SparseMatrixType m2(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test diagonal
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
							 | 
						|
								    SparseMatrixType m2(rows, cols);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
							 | 
						|
								    VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval());
							 | 
						|
								    
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag);
							 | 
						|
								    m2.diagonal()      += refMat2.diagonal();
							 | 
						|
								    refMat2.diagonal() += refMat2.diagonal();
							 | 
						|
								    VERIFY_IS_APPROX(m2, refMat2);
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  // test diagonal to sparse
							 | 
						|
								  {
							 | 
						|
								    DenseVector d = DenseVector::Random(rows);
							 | 
						|
								    DenseMatrix refMat2 = d.asDiagonal();
							 | 
						|
								    SparseMatrixType m2(rows, rows);
							 | 
						|
								    m2 = d.asDiagonal();
							 | 
						|
								    VERIFY_IS_APPROX(m2, refMat2);
							 | 
						|
								    SparseMatrixType m3(d.asDiagonal());
							 | 
						|
								    VERIFY_IS_APPROX(m3, refMat2);
							 | 
						|
								    refMat2 += d.asDiagonal();
							 | 
						|
								    m2 += d.asDiagonal();
							 | 
						|
								    VERIFY_IS_APPROX(m2, refMat2);
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  // test conservative resize
							 | 
						|
								  {
							 | 
						|
								      std::vector< std::pair<StorageIndex,StorageIndex> > inc;
							 | 
						|
								      if(rows > 3 && cols > 2)
							 | 
						|
								        inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2));
							 | 
						|
								      inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0));
							 | 
						|
								      inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2));
							 | 
						|
								      inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0));
							 | 
						|
								      inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3));
							 | 
						|
								      
							 | 
						|
								      for(size_t i = 0; i< inc.size(); i++) {
							 | 
						|
								        StorageIndex incRows = inc[i].first;
							 | 
						|
								        StorageIndex incCols = inc[i].second;
							 | 
						|
								        SparseMatrixType m1(rows, cols);
							 | 
						|
								        DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
							 | 
						|
								        initSparse<Scalar>(density, refMat1, m1);
							 | 
						|
								        
							 | 
						|
								        m1.conservativeResize(rows+incRows, cols+incCols);
							 | 
						|
								        refMat1.conservativeResize(rows+incRows, cols+incCols);
							 | 
						|
								        if (incRows > 0) refMat1.bottomRows(incRows).setZero();
							 | 
						|
								        if (incCols > 0) refMat1.rightCols(incCols).setZero();
							 | 
						|
								        
							 | 
						|
								        VERIFY_IS_APPROX(m1, refMat1);
							 | 
						|
								        
							 | 
						|
								        // Insert new values
							 | 
						|
								        if (incRows > 0) 
							 | 
						|
								          m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
							 | 
						|
								        if (incCols > 0) 
							 | 
						|
								          m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;
							 | 
						|
								          
							 | 
						|
								        VERIFY_IS_APPROX(m1, refMat1);
							 | 
						|
								          
							 | 
						|
								          
							 | 
						|
								      }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test Identity matrix
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows);
							 | 
						|
								    SparseMatrixType m1(rows, rows);
							 | 
						|
								    m1.setIdentity();
							 | 
						|
								    VERIFY_IS_APPROX(m1, refMat1);
							 | 
						|
								    for(int k=0; k<rows*rows/4; ++k)
							 | 
						|
								    {
							 | 
						|
								      Index i = internal::random<Index>(0,rows-1);
							 | 
						|
								      Index j = internal::random<Index>(0,rows-1);
							 | 
						|
								      Scalar v = internal::random<Scalar>();
							 | 
						|
								      m1.coeffRef(i,j) = v;
							 | 
						|
								      refMat1.coeffRef(i,j) = v;
							 | 
						|
								      VERIFY_IS_APPROX(m1, refMat1);
							 | 
						|
								      if(internal::random<Index>(0,10)<2)
							 | 
						|
								        m1.makeCompressed();
							 | 
						|
								    }
							 | 
						|
								    m1.setIdentity();
							 | 
						|
								    refMat1.setIdentity();
							 | 
						|
								    VERIFY_IS_APPROX(m1, refMat1);
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								template<typename SparseMatrixType>
							 | 
						|
								void big_sparse_triplet(Index rows, Index cols, double density) {
							 | 
						|
								  typedef typename SparseMatrixType::StorageIndex StorageIndex;
							 | 
						|
								  typedef typename SparseMatrixType::Scalar Scalar;
							 | 
						|
								  typedef Triplet<Scalar,Index> TripletType;
							 | 
						|
								  std::vector<TripletType> triplets;
							 | 
						|
								  double nelements = density * rows*cols;
							 | 
						|
								  VERIFY(nelements>=0 && nelements <  NumTraits<StorageIndex>::highest());
							 | 
						|
								  Index ntriplets = Index(nelements);
							 | 
						|
								  triplets.reserve(ntriplets);
							 | 
						|
								  Scalar sum = Scalar(0);
							 | 
						|
								  for(Index i=0;i<ntriplets;++i)
							 | 
						|
								  {
							 | 
						|
								    Index r = internal::random<Index>(0,rows-1);
							 | 
						|
								    Index c = internal::random<Index>(0,cols-1);
							 | 
						|
								    Scalar v = internal::random<Scalar>();
							 | 
						|
								    triplets.push_back(TripletType(r,c,v));
							 | 
						|
								    sum += v;
							 | 
						|
								  }
							 | 
						|
								  SparseMatrixType m(rows,cols);
							 | 
						|
								  m.setFromTriplets(triplets.begin(), triplets.end());
							 | 
						|
								  VERIFY(m.nonZeros() <= ntriplets);
							 | 
						|
								  VERIFY_IS_APPROX(sum, m.sum());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								void test_sparse_basic()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    int r = StormEigen::internal::random<int>(1,200), c = StormEigen::internal::random<int>(1,200);
							 | 
						|
								    if(StormEigen::internal::random<int>(0,4) == 0) {
							 | 
						|
								      r = c; // check square matrices in 25% of tries
							 | 
						|
								    }
							 | 
						|
								    STORMEIGEN_UNUSED_VARIABLE(r+c);
							 | 
						|
								    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) ));
							 | 
						|
								    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
							 | 
						|
								    CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
							 | 
						|
								    CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
							 | 
						|
								    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) ));
							 | 
						|
								    CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) ));
							 | 
						|
								    CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) ));
							 | 
						|
								    
							 | 
						|
								    r = StormEigen::internal::random<int>(1,100);
							 | 
						|
								    c = StormEigen::internal::random<int>(1,100);
							 | 
						|
								    if(StormEigen::internal::random<int>(0,4) == 0) {
							 | 
						|
								      r = c; // check square matrices in 25% of tries
							 | 
						|
								    }
							 | 
						|
								    
							 | 
						|
								    CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
							 | 
						|
								    CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
							 | 
						|
								  CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125)));
							 | 
						|
								  CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125)));
							 | 
						|
								
							 | 
						|
								  // Regression test for bug 1105
							 | 
						|
								#ifdef STORMEIGEN_TEST_PART_6
							 | 
						|
								  {
							 | 
						|
								    int n = StormEigen::internal::random<int>(200,600);
							 | 
						|
								    SparseMatrix<std::complex<double>,0, long> mat(n, n);
							 | 
						|
								    std::complex<double> val;
							 | 
						|
								
							 | 
						|
								    for(int i=0; i<n; ++i)
							 | 
						|
								    {
							 | 
						|
								      mat.coeffRef(i, i%(n/10)) = val;
							 | 
						|
								      VERIFY(mat.data().allocatedSize()<20*n);
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								#endif
							 | 
						|
								}
							 |