You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							107 lines
						
					
					
						
							4.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							107 lines
						
					
					
						
							4.3 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
							 | 
						|
								// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#define TEST_ENABLE_TEMPORARY_TRACKING
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								
							 | 
						|
								template <int N, typename XprType>
							 | 
						|
								void use_n_times(const XprType &xpr)
							 | 
						|
								{
							 | 
						|
								  typename internal::nested_eval<XprType,N>::type mat(xpr);
							 | 
						|
								  typename XprType::PlainObject res(mat.rows(), mat.cols());
							 | 
						|
								  nb_temporaries--; // remove res
							 | 
						|
								  res.setZero();
							 | 
						|
								  for(int i=0; i<N; ++i)
							 | 
						|
								    res += mat;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template <int N, typename ReferenceType, typename XprType>
							 | 
						|
								bool verify_eval_type(const XprType &, const ReferenceType&)
							 | 
						|
								{
							 | 
						|
								  typedef typename internal::nested_eval<XprType,N>::type EvalType;
							 | 
						|
								  return internal::is_same<typename internal::remove_all<EvalType>::type, typename internal::remove_all<ReferenceType>::type>::value;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template <typename MatrixType> void run_nesting_ops_1(const MatrixType& _m)
							 | 
						|
								{
							 | 
						|
								  typename internal::nested_eval<MatrixType,2>::type m(_m);
							 | 
						|
								
							 | 
						|
								  // Make really sure that we are in debug mode!
							 | 
						|
								  VERIFY_RAISES_ASSERT(eigen_assert(false));
							 | 
						|
								
							 | 
						|
								  // The only intention of these tests is to ensure that this code does
							 | 
						|
								  // not trigger any asserts or segmentation faults... more to come.
							 | 
						|
								  VERIFY_IS_APPROX( (m.transpose() * m).diagonal().sum(), (m.transpose() * m).diagonal().sum() );
							 | 
						|
								  VERIFY_IS_APPROX( (m.transpose() * m).diagonal().array().abs().sum(), (m.transpose() * m).diagonal().array().abs().sum() );
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX( (m.transpose() * m).array().abs().sum(), (m.transpose() * m).array().abs().sum() );
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template <typename MatrixType> void run_nesting_ops_2(const MatrixType& _m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  Index rows = _m.rows();
							 | 
						|
								  Index cols = _m.cols();
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows,cols);
							 | 
						|
								  Matrix<Scalar,MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime,ColMajor> m2;
							 | 
						|
								
							 | 
						|
								  if((MatrixType::SizeAtCompileTime==Dynamic))
							 | 
						|
								  {
							 | 
						|
								    VERIFY_EVALUATION_COUNT( use_n_times<1>(m1 + m1*m1), 1 );
							 | 
						|
								    VERIFY_EVALUATION_COUNT( use_n_times<10>(m1 + m1*m1), 1 );
							 | 
						|
								
							 | 
						|
								    VERIFY_EVALUATION_COUNT( use_n_times<1>(m1.template triangularView<Lower>().solve(m1.col(0))), 1 );
							 | 
						|
								    VERIFY_EVALUATION_COUNT( use_n_times<10>(m1.template triangularView<Lower>().solve(m1.col(0))), 1 );
							 | 
						|
								
							 | 
						|
								    VERIFY_EVALUATION_COUNT( use_n_times<1>(Scalar(2)*m1.template triangularView<Lower>().solve(m1.col(0))), 2 ); // FIXME could be one by applying the scaling in-place on the solve result
							 | 
						|
								    VERIFY_EVALUATION_COUNT( use_n_times<1>(m1.col(0)+m1.template triangularView<Lower>().solve(m1.col(0))), 2 ); // FIXME could be one by adding m1.col() inplace
							 | 
						|
								    VERIFY_EVALUATION_COUNT( use_n_times<10>(m1.col(0)+m1.template triangularView<Lower>().solve(m1.col(0))), 2 );
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  {
							 | 
						|
								    VERIFY( verify_eval_type<10>(m1, m1) );
							 | 
						|
								    if(!NumTraits<Scalar>::IsComplex)
							 | 
						|
								    {
							 | 
						|
								      VERIFY( verify_eval_type<3>(2*m1, 2*m1) );
							 | 
						|
								      VERIFY( verify_eval_type<4>(2*m1, m1) );
							 | 
						|
								    }
							 | 
						|
								    else
							 | 
						|
								    {
							 | 
						|
								      VERIFY( verify_eval_type<1>(2*m1, 2*m1) );
							 | 
						|
								      VERIFY( verify_eval_type<2>(2*m1, m1) );
							 | 
						|
								    }
							 | 
						|
								    VERIFY( verify_eval_type<2>(m1+m1, m1+m1) );
							 | 
						|
								    VERIFY( verify_eval_type<3>(m1+m1, m1) );
							 | 
						|
								    VERIFY( verify_eval_type<1>(m1*m1.transpose(), m2) );
							 | 
						|
								    VERIFY( verify_eval_type<1>(m1*(m1+m1).transpose(), m2) );
							 | 
						|
								    VERIFY( verify_eval_type<2>(m1*m1.transpose(), m2) );
							 | 
						|
								    VERIFY( verify_eval_type<1>(m1+m1*m1, m1) );
							 | 
						|
								
							 | 
						|
								    VERIFY( verify_eval_type<1>(m1.template triangularView<Lower>().solve(m1), m1) );
							 | 
						|
								    VERIFY( verify_eval_type<1>(m1+m1.template triangularView<Lower>().solve(m1), m1) );
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								void test_nesting_ops()
							 | 
						|
								{
							 | 
						|
								  CALL_SUBTEST_1(run_nesting_ops_1(MatrixXf::Random(25,25)));
							 | 
						|
								  CALL_SUBTEST_2(run_nesting_ops_1(MatrixXcd::Random(25,25)));
							 | 
						|
								  CALL_SUBTEST_3(run_nesting_ops_1(Matrix4f::Random()));
							 | 
						|
								  CALL_SUBTEST_4(run_nesting_ops_1(Matrix2d::Random()));
							 | 
						|
								
							 | 
						|
								  Index s = internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE);
							 | 
						|
								  CALL_SUBTEST_1( run_nesting_ops_2(MatrixXf(s,s)) );
							 | 
						|
								  CALL_SUBTEST_2( run_nesting_ops_2(MatrixXcd(s,s)) );
							 | 
						|
								  CALL_SUBTEST_3( run_nesting_ops_2(Matrix4f()) );
							 | 
						|
								  CALL_SUBTEST_4( run_nesting_ops_2(Matrix2d()) );
							 | 
						|
								  TEST_SET_BUT_UNUSED_VARIABLE(s)
							 | 
						|
								}
							 |