You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							210 lines
						
					
					
						
							7.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							210 lines
						
					
					
						
							7.3 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "common.h"
							 | 
						|
								
							 | 
						|
								// y = alpha*A*x + beta*y
							 | 
						|
								int EIGEN_BLAS_FUNC(symv) (char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
							 | 
						|
								{
							 | 
						|
								  Scalar* a = reinterpret_cast<Scalar*>(pa);
							 | 
						|
								  Scalar* x = reinterpret_cast<Scalar*>(px);
							 | 
						|
								  Scalar* y = reinterpret_cast<Scalar*>(py);
							 | 
						|
								  Scalar alpha  = *reinterpret_cast<Scalar*>(palpha);
							 | 
						|
								  Scalar beta   = *reinterpret_cast<Scalar*>(pbeta);
							 | 
						|
								
							 | 
						|
								  // check arguments
							 | 
						|
								  int info = 0;
							 | 
						|
								  if(UPLO(*uplo)==INVALID)        info = 1;
							 | 
						|
								  else if(*n<0)                   info = 2;
							 | 
						|
								  else if(*lda<std::max(1,*n))    info = 5;
							 | 
						|
								  else if(*incx==0)               info = 7;
							 | 
						|
								  else if(*incy==0)               info = 10;
							 | 
						|
								  if(info)
							 | 
						|
								    return xerbla_(SCALAR_SUFFIX_UP"SYMV ",&info,6);
							 | 
						|
								
							 | 
						|
								  if(*n==0)
							 | 
						|
								    return 0;
							 | 
						|
								
							 | 
						|
								  Scalar* actual_x = get_compact_vector(x,*n,*incx);
							 | 
						|
								  Scalar* actual_y = get_compact_vector(y,*n,*incy);
							 | 
						|
								
							 | 
						|
								  if(beta!=Scalar(1))
							 | 
						|
								  {
							 | 
						|
								    if(beta==Scalar(0)) vector(actual_y, *n).setZero();
							 | 
						|
								    else                vector(actual_y, *n) *= beta;
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // TODO performs a direct call to the underlying implementation function
							 | 
						|
								       if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n));
							 | 
						|
								  else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n));
							 | 
						|
								
							 | 
						|
								  if(actual_x!=x) delete[] actual_x;
							 | 
						|
								  if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
							 | 
						|
								
							 | 
						|
								  return 1;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// C := alpha*x*x' + C
							 | 
						|
								int EIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pc, int *ldc)
							 | 
						|
								{
							 | 
						|
								
							 | 
						|
								//   typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar);
							 | 
						|
								//   static functype func[2];
							 | 
						|
								
							 | 
						|
								//   static bool init = false;
							 | 
						|
								//   if(!init)
							 | 
						|
								//   {
							 | 
						|
								//     for(int k=0; k<2; ++k)
							 | 
						|
								//       func[k] = 0;
							 | 
						|
								//
							 | 
						|
								//     func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
							 | 
						|
								//     func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
							 | 
						|
								
							 | 
						|
								//     init = true;
							 | 
						|
								//   }
							 | 
						|
								
							 | 
						|
								  Scalar* x = reinterpret_cast<Scalar*>(px);
							 | 
						|
								  Scalar* c = reinterpret_cast<Scalar*>(pc);
							 | 
						|
								  Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
							 | 
						|
								
							 | 
						|
								  int info = 0;
							 | 
						|
								  if(UPLO(*uplo)==INVALID)                                            info = 1;
							 | 
						|
								  else if(*n<0)                                                       info = 2;
							 | 
						|
								  else if(*incx==0)                                                   info = 5;
							 | 
						|
								  else if(*ldc<std::max(1,*n))                                        info = 7;
							 | 
						|
								  if(info)
							 | 
						|
								    return xerbla_(SCALAR_SUFFIX_UP"SYR  ",&info,6);
							 | 
						|
								
							 | 
						|
								  if(*n==0 || alpha==Scalar(0)) return 1;
							 | 
						|
								
							 | 
						|
								  // if the increment is not 1, let's copy it to a temporary vector to enable vectorization
							 | 
						|
								  Scalar* x_cpy = get_compact_vector(x,*n,*incx);
							 | 
						|
								
							 | 
						|
								  Matrix<Scalar,Dynamic,Dynamic> m2(matrix(c,*n,*n,*ldc));
							 | 
						|
								  
							 | 
						|
								  // TODO check why this is not accurate enough for lapack tests
							 | 
						|
								//   if(UPLO(*uplo)==LO)       matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha);
							 | 
						|
								//   else if(UPLO(*uplo)==UP)  matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha);
							 | 
						|
								
							 | 
						|
								  if(UPLO(*uplo)==LO)
							 | 
						|
								    for(int j=0;j<*n;++j)
							 | 
						|
								      matrix(c,*n,*n,*ldc).col(j).tail(*n-j) += alpha * x_cpy[j] * vector(x_cpy+j,*n-j);
							 | 
						|
								  else
							 | 
						|
								    for(int j=0;j<*n;++j)
							 | 
						|
								      matrix(c,*n,*n,*ldc).col(j).head(j+1) += alpha * x_cpy[j] * vector(x_cpy,j+1);
							 | 
						|
								
							 | 
						|
								  if(x_cpy!=x)  delete[] x_cpy;
							 | 
						|
								
							 | 
						|
								  return 1;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// C := alpha*x*y' + alpha*y*x' + C
							 | 
						|
								int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, int *ldc)
							 | 
						|
								{
							 | 
						|
								//   typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
							 | 
						|
								//   static functype func[2];
							 | 
						|
								//
							 | 
						|
								//   static bool init = false;
							 | 
						|
								//   if(!init)
							 | 
						|
								//   {
							 | 
						|
								//     for(int k=0; k<2; ++k)
							 | 
						|
								//       func[k] = 0;
							 | 
						|
								//
							 | 
						|
								//     func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
							 | 
						|
								//     func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
							 | 
						|
								//
							 | 
						|
								//     init = true;
							 | 
						|
								//   }
							 | 
						|
								
							 | 
						|
								  Scalar* x = reinterpret_cast<Scalar*>(px);
							 | 
						|
								  Scalar* y = reinterpret_cast<Scalar*>(py);
							 | 
						|
								  Scalar* c = reinterpret_cast<Scalar*>(pc);
							 | 
						|
								  Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
							 | 
						|
								
							 | 
						|
								  int info = 0;
							 | 
						|
								  if(UPLO(*uplo)==INVALID)                                            info = 1;
							 | 
						|
								  else if(*n<0)                                                       info = 2;
							 | 
						|
								  else if(*incx==0)                                                   info = 5;
							 | 
						|
								  else if(*incy==0)                                                   info = 7;
							 | 
						|
								  else if(*ldc<std::max(1,*n))                                        info = 9;
							 | 
						|
								  if(info)
							 | 
						|
								    return xerbla_(SCALAR_SUFFIX_UP"SYR2 ",&info,6);
							 | 
						|
								
							 | 
						|
								  if(alpha==Scalar(0))
							 | 
						|
								    return 1;
							 | 
						|
								
							 | 
						|
								  Scalar* x_cpy = get_compact_vector(x,*n,*incx);
							 | 
						|
								  Scalar* y_cpy = get_compact_vector(y,*n,*incy);
							 | 
						|
								
							 | 
						|
								  // TODO perform direct calls to underlying implementation
							 | 
						|
								  if(UPLO(*uplo)==LO)       matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha);
							 | 
						|
								  else if(UPLO(*uplo)==UP)  matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha);
							 | 
						|
								
							 | 
						|
								  if(x_cpy!=x)  delete[] x_cpy;
							 | 
						|
								  if(y_cpy!=y)  delete[] y_cpy;
							 | 
						|
								
							 | 
						|
								//   int code = UPLO(*uplo);
							 | 
						|
								//   if(code>=2 || func[code]==0)
							 | 
						|
								//     return 0;
							 | 
						|
								
							 | 
						|
								//   func[code](*n, a, *inca, b, *incb, c, *ldc, alpha);
							 | 
						|
								  return 1;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								/**  DSBMV  performs the matrix-vector  operation
							 | 
						|
								  *
							 | 
						|
								  *     y := alpha*A*x + beta*y,
							 | 
						|
								  *
							 | 
						|
								  *  where alpha and beta are scalars, x and y are n element vectors and
							 | 
						|
								  *  A is an n by n symmetric band matrix, with k super-diagonals.
							 | 
						|
								  */
							 | 
						|
								// int EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
							 | 
						|
								//                            RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
							 | 
						|
								// {
							 | 
						|
								//   return 1;
							 | 
						|
								// }
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								/**  DSPMV  performs the matrix-vector operation
							 | 
						|
								  *
							 | 
						|
								  *     y := alpha*A*x + beta*y,
							 | 
						|
								  *
							 | 
						|
								  *  where alpha and beta are scalars, x and y are n element vectors and
							 | 
						|
								  *  A is an n by n symmetric matrix, supplied in packed form.
							 | 
						|
								  *
							 | 
						|
								  */
							 | 
						|
								// int EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
							 | 
						|
								// {
							 | 
						|
								//   return 1;
							 | 
						|
								// }
							 | 
						|
								
							 | 
						|
								/**  DSPR    performs the symmetric rank 1 operation
							 | 
						|
								  *
							 | 
						|
								  *     A := alpha*x*x' + A,
							 | 
						|
								  *
							 | 
						|
								  *  where alpha is a real scalar, x is an n element vector and A is an
							 | 
						|
								  *  n by n symmetric matrix, supplied in packed form.
							 | 
						|
								  */
							 | 
						|
								// int EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *alpha, Scalar *x, int *incx, Scalar *ap)
							 | 
						|
								// {
							 | 
						|
								//   return 1;
							 | 
						|
								// }
							 | 
						|
								
							 | 
						|
								/**  DSPR2  performs the symmetric rank 2 operation
							 | 
						|
								  *
							 | 
						|
								  *     A := alpha*x*y' + alpha*y*x' + A,
							 | 
						|
								  *
							 | 
						|
								  *  where alpha is a scalar, x and y are n element vectors and A is an
							 | 
						|
								  *  n by n symmetric matrix, supplied in packed form.
							 | 
						|
								  */
							 | 
						|
								// int EIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
							 | 
						|
								// {
							 | 
						|
								//   return 1;
							 | 
						|
								// }
							 | 
						|
								
							 |