You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							203 lines
						
					
					
						
							9.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							203 lines
						
					
					
						
							9.3 KiB
						
					
					
				| // A simple quickref for Eigen. Add anything that's missing. | |
| // Main author: Keir Mierle | |
| 
 | |
| #include <Eigen/Dense> | |
| 
 | |
| Matrix<double, 3, 3> A;               // Fixed rows and cols. Same as Matrix3d. | |
| Matrix<double, 3, Dynamic> B;         // Fixed rows, dynamic cols. | |
| Matrix<double, Dynamic, Dynamic> C;   // Full dynamic. Same as MatrixXd. | |
| Matrix<double, 3, 3, RowMajor> E;     // Row major; default is column-major. | |
| Matrix3f P, Q, R;                     // 3x3 float matrix. | |
| Vector3f x, y, z;                     // 3x1 float matrix. | |
| RowVector3f a, b, c;                  // 1x3 float matrix. | |
| VectorXd v;                           // Dynamic column vector of doubles | |
| double s;                             | |
| 
 | |
| // Basic usage | |
| // Eigen          // Matlab           // comments | |
| x.size()          // length(x)        // vector size | |
| C.rows()          // size(C,1)        // number of rows | |
| C.cols()          // size(C,2)        // number of columns | |
| x(i)              // x(i+1)           // Matlab is 1-based | |
| C(i,j)            // C(i+1,j+1)       // | |
| 
 | |
| A.resize(4, 4);   // Runtime error if assertions are on. | |
| B.resize(4, 9);   // Runtime error if assertions are on. | |
| A.resize(3, 3);   // Ok; size didn't change. | |
| B.resize(3, 9);   // Ok; only dynamic cols changed. | |
|                    | |
| A << 1, 2, 3,     // Initialize A. The elements can also be | |
|      4, 5, 6,     // matrices, which are stacked along cols | |
|      7, 8, 9;     // and then the rows are stacked. | |
| B << A, A, A;     // B is three horizontally stacked A's. | |
| A.fill(10);       // Fill A with all 10's. | |
| 
 | |
| // Eigen                            // Matlab | |
| MatrixXd::Identity(rows,cols)       // eye(rows,cols) | |
| C.setIdentity(rows,cols)            // C = eye(rows,cols) | |
| MatrixXd::Zero(rows,cols)           // zeros(rows,cols) | |
| C.setZero(rows,cols)                // C = ones(rows,cols) | |
| MatrixXd::Ones(rows,cols)           // ones(rows,cols) | |
| C.setOnes(rows,cols)                // C = ones(rows,cols) | |
| MatrixXd::Random(rows,cols)         // rand(rows,cols)*2-1        // MatrixXd::Random returns uniform random numbers in (-1, 1). | |
| C.setRandom(rows,cols)              // C = rand(rows,cols)*2-1 | |
| VectorXd::LinSpace(size,low,high)   // linspace(low,high,size)' | |
| v.setLinSpace(size,low,high)        // v = linspace(low,high,size)' | |
| 
 | |
| 
 | |
| // Matrix slicing and blocks. All expressions listed here are read/write. | |
| // Templated size versions are faster. Note that Matlab is 1-based (a size N | |
| // vector is x(1)...x(N)). | |
| // Eigen                           // Matlab | |
| x.head(n)                          // x(1:n) | |
| x.head<n>()                        // x(1:n) | |
| x.tail(n)                          // x(end - n + 1: end) | |
| x.tail<n>()                        // x(end - n + 1: end) | |
| x.segment(i, n)                    // x(i+1 : i+n) | |
| x.segment<n>(i)                    // x(i+1 : i+n) | |
| P.block(i, j, rows, cols)          // P(i+1 : i+rows, j+1 : j+cols) | |
| P.block<rows, cols>(i, j)          // P(i+1 : i+rows, j+1 : j+cols) | |
| P.row(i)                           // P(i+1, :) | |
| P.col(j)                           // P(:, j+1) | |
| P.leftCols<cols>()                 // P(:, 1:cols) | |
| P.leftCols(cols)                   // P(:, 1:cols) | |
| P.middleCols<cols>(j)              // P(:, j+1:j+cols) | |
| P.middleCols(j, cols)              // P(:, j+1:j+cols) | |
| P.rightCols<cols>()                // P(:, end-cols+1:end) | |
| P.rightCols(cols)                  // P(:, end-cols+1:end) | |
| P.topRows<rows>()                  // P(1:rows, :) | |
| P.topRows(rows)                    // P(1:rows, :) | |
| P.middleRows<rows>(i)              // P(:, i+1:i+rows) | |
| P.middleRows(i, rows)              // P(:, i+1:i+rows) | |
| P.bottomRows<rows>()               // P(:, end-rows+1:end) | |
| P.bottomRows(rows)                 // P(:, end-rows+1:end) | |
| P.topLeftCorner(rows, cols)        // P(1:rows, 1:cols) | |
| P.topRightCorner(rows, cols)       // P(1:rows, end-cols+1:end) | |
| P.bottomLeftCorner(rows, cols)     // P(end-rows+1:end, 1:cols) | |
| P.bottomRightCorner(rows, cols)    // P(end-rows+1:end, end-cols+1:end) | |
| P.topLeftCorner<rows,cols>()       // P(1:rows, 1:cols) | |
| P.topRightCorner<rows,cols>()      // P(1:rows, end-cols+1:end) | |
| P.bottomLeftCorner<rows,cols>()    // P(end-rows+1:end, 1:cols) | |
| P.bottomRightCorner<rows,cols>()   // P(end-rows+1:end, end-cols+1:end) | |
| 
 | |
| // Of particular note is Eigen's swap function which is highly optimized. | |
| // Eigen                           // Matlab | |
| R.row(i) = P.col(j);               // R(i, :) = P(:, i) | |
| R.col(j1).swap(mat1.col(j2));      // R(:, [j1 j2]) = R(:, [j2, j1]) | |
| 
 | |
| // Views, transpose, etc; all read-write except for .adjoint(). | |
| // Eigen                           // Matlab | |
| R.adjoint()                        // R' | |
| R.transpose()                      // R.' or conj(R') | |
| R.diagonal()                       // diag(R) | |
| x.asDiagonal()                     // diag(x) | |
| 
 | |
| // All the same as Matlab, but matlab doesn't have *= style operators. | |
| // Matrix-vector.  Matrix-matrix.   Matrix-scalar. | |
| y  = M*x;          R  = P*Q;        R  = P*s; | |
| a  = b*M;          R  = P - Q;      R  = s*P; | |
| a *= M;            R  = P + Q;      R  = P/s; | |
|                    R *= Q;          R  = s*P; | |
|                    R += Q;          R *= s; | |
|                    R -= Q;          R /= s; | |
| 
 | |
| // Vectorized operations on each element independently | |
| // Eigen                  // Matlab | |
| R = P.cwiseProduct(Q);    // R = P .* Q | |
| R = P.array() * s.array();// R = P .* s | |
| R = P.cwiseQuotient(Q);   // R = P ./ Q | |
| R = P.array() / Q.array();// R = P ./ Q | |
| R = P.array() + s.array();// R = P + s | |
| R = P.array() - s.array();// R = P - s | |
| R.array() += s;           // R = R + s | |
| R.array() -= s;           // R = R - s | |
| R.array() < Q.array();    // R < Q | |
| R.array() <= Q.array();   // R <= Q | |
| R.cwiseInverse();         // 1 ./ P | |
| R.array().inverse();      // 1 ./ P | |
| R.array().sin()           // sin(P) | |
| R.array().cos()           // cos(P) | |
| R.array().pow(s)          // P .^ s | |
| R.array().square()        // P .^ 2 | |
| R.array().cube()          // P .^ 3 | |
| R.cwiseSqrt()             // sqrt(P) | |
| R.array().sqrt()          // sqrt(P) | |
| R.array().exp()           // exp(P) | |
| R.array().log()           // log(P) | |
| R.cwiseMax(P)             // max(R, P) | |
| R.array().max(P.array())  // max(R, P) | |
| R.cwiseMin(P)             // min(R, P) | |
| R.array().min(P.array())  // min(R, P) | |
| R.cwiseAbs()              // abs(P) | |
| R.array().abs()           // abs(P) | |
| R.cwiseAbs2()             // abs(P.^2) | |
| R.array().abs2()          // abs(P.^2) | |
| (R.array() < s).select(P,Q);  // (R < s ? P : Q) | |
| 
 | |
| // Reductions. | |
| int r, c; | |
| // Eigen                  // Matlab | |
| R.minCoeff()              // min(R(:)) | |
| R.maxCoeff()              // max(R(:)) | |
| s = R.minCoeff(&r, &c)    // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i); | |
| s = R.maxCoeff(&r, &c)    // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i); | |
| R.sum()                   // sum(R(:)) | |
| R.colwise().sum()         // sum(R) | |
| R.rowwise().sum()         // sum(R, 2) or sum(R')' | |
| R.prod()                  // prod(R(:)) | |
| R.colwise().prod()        // prod(R) | |
| R.rowwise().prod()        // prod(R, 2) or prod(R')' | |
| R.trace()                 // trace(R) | |
| R.all()                   // all(R(:)) | |
| R.colwise().all()         // all(R) | |
| R.rowwise().all()         // all(R, 2) | |
| R.any()                   // any(R(:)) | |
| R.colwise().any()         // any(R) | |
| R.rowwise().any()         // any(R, 2) | |
| 
 | |
| // Dot products, norms, etc. | |
| // Eigen                  // Matlab | |
| x.norm()                  // norm(x).    Note that norm(R) doesn't work in Eigen. | |
| x.squaredNorm()           // dot(x, x)   Note the equivalence is not true for complex | |
| x.dot(y)                  // dot(x, y) | |
| x.cross(y)                // cross(x, y) Requires #include <Eigen/Geometry> | |
| 
 | |
| //// Type conversion | |
| // Eigen                           // Matlab | |
| A.cast<double>();                  // double(A) | |
| A.cast<float>();                   // single(A) | |
| A.cast<int>();                     // int32(A) | |
| // if the original type equals destination type, no work is done | |
| 
 | |
| // Note that for most operations Eigen requires all operands to have the same type: | |
| MatrixXf F = MatrixXf::Zero(3,3); | |
| A += F;                // illegal in Eigen. In Matlab A = A+F is allowed | |
| A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly) | |
| 
 | |
| // Eigen can map existing memory into Eigen matrices. | |
| float array[3]; | |
| Vector3f::Map(array).fill(10);            // create a temporary Map over array and sets entries to 10 | |
| int data[4] = {1, 2, 3, 4}; | |
| Matrix2i mat2x2(data);                    // copies data into mat2x2 | |
| Matrix2i::Map(data) = 2*mat2x2;           // overwrite elements of data with 2*mat2x2 | |
| MatrixXi::Map(data, 2, 2) += mat2x2;      // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time) | |
| 
 | |
| // Solve Ax = b. Result stored in x. Matlab: x = A \ b. | |
| x = A.ldlt().solve(b));  // A sym. p.s.d.    #include <Eigen/Cholesky> | |
| x = A.llt() .solve(b));  // A sym. p.d.      #include <Eigen/Cholesky> | |
| x = A.lu()  .solve(b));  // Stable and fast. #include <Eigen/LU> | |
| x = A.qr()  .solve(b));  // No pivoting.     #include <Eigen/QR> | |
| x = A.svd() .solve(b));  // Stable, slowest. #include <Eigen/SVD> | |
| // .ldlt() -> .matrixL() and .matrixD() | |
| // .llt()  -> .matrixL() | |
| // .lu()   -> .matrixL() and .matrixU() | |
| // .qr()   -> .matrixQ() and .matrixR() | |
| // .svd()  -> .matrixU(), .singularValues(), and .matrixV() | |
| 
 | |
| // Eigenvalue problems | |
| // Eigen                          // Matlab | |
| A.eigenvalues();                  // eig(A); | |
| EigenSolver<Matrix3d> eig(A);     // [vec val] = eig(A) | |
| eig.eigenvalues();                // diag(val) | |
| eig.eigenvectors();               // vec | |
| // For self-adjoint matrices use SelfAdjointEigenSolver<>
 |