You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							360 lines
						
					
					
						
							12 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							360 lines
						
					
					
						
							12 KiB
						
					
					
				
								#include <typeinfo>
							 | 
						|
								#include <iostream>
							 | 
						|
								#include <StormEigen/Core>
							 | 
						|
								#include "BenchTimer.h"
							 | 
						|
								using namespace StormEigen;
							 | 
						|
								using namespace std;
							 | 
						|
								
							 | 
						|
								template<typename T>
							 | 
						|
								STORMEIGEN_DONT_INLINE typename T::Scalar sqsumNorm(T& v)
							 | 
						|
								{
							 | 
						|
								  return v.norm();
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename T>
							 | 
						|
								STORMEIGEN_DONT_INLINE typename T::Scalar stableNorm(T& v)
							 | 
						|
								{
							 | 
						|
								  return v.stableNorm();
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename T>
							 | 
						|
								STORMEIGEN_DONT_INLINE typename T::Scalar hypotNorm(T& v)
							 | 
						|
								{
							 | 
						|
								  return v.hypotNorm();
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename T>
							 | 
						|
								STORMEIGEN_DONT_INLINE typename T::Scalar blueNorm(T& v)
							 | 
						|
								{
							 | 
						|
								  return v.blueNorm();
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename T>
							 | 
						|
								STORMEIGEN_DONT_INLINE typename T::Scalar lapackNorm(T& v)
							 | 
						|
								{
							 | 
						|
								  typedef typename T::Scalar Scalar;
							 | 
						|
								  int n = v.size();
							 | 
						|
								  Scalar scale = 0;
							 | 
						|
								  Scalar ssq = 1;
							 | 
						|
								  for (int i=0;i<n;++i)
							 | 
						|
								  {
							 | 
						|
								    Scalar ax = std::abs(v.coeff(i));
							 | 
						|
								    if (scale >= ax)
							 | 
						|
								    {
							 | 
						|
								      ssq += numext::abs2(ax/scale);
							 | 
						|
								    }
							 | 
						|
								    else
							 | 
						|
								    {
							 | 
						|
								      ssq = Scalar(1) + ssq * numext::abs2(scale/ax);
							 | 
						|
								      scale = ax;
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  return scale * std::sqrt(ssq);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename T>
							 | 
						|
								STORMEIGEN_DONT_INLINE typename T::Scalar twopassNorm(T& v)
							 | 
						|
								{
							 | 
						|
								  typedef typename T::Scalar Scalar;
							 | 
						|
								  Scalar s = v.array().abs().maxCoeff();
							 | 
						|
								  return s*(v/s).norm();
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename T>
							 | 
						|
								STORMEIGEN_DONT_INLINE typename T::Scalar bl2passNorm(T& v)
							 | 
						|
								{
							 | 
						|
								  return v.stableNorm();
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename T>
							 | 
						|
								STORMEIGEN_DONT_INLINE typename T::Scalar divacNorm(T& v)
							 | 
						|
								{
							 | 
						|
								  int n =v.size() / 2;
							 | 
						|
								  for (int i=0;i<n;++i)
							 | 
						|
								    v(i) = v(2*i)*v(2*i) + v(2*i+1)*v(2*i+1);
							 | 
						|
								  n = n/2;
							 | 
						|
								  while (n>0)
							 | 
						|
								  {
							 | 
						|
								    for (int i=0;i<n;++i)
							 | 
						|
								      v(i) = v(2*i) + v(2*i+1);
							 | 
						|
								    n = n/2;
							 | 
						|
								  }
							 | 
						|
								  return std::sqrt(v(0));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								namespace StormEigen {
							 | 
						|
								namespace internal {
							 | 
						|
								#ifdef STORMEIGEN_VECTORIZE
							 | 
						|
								Packet4f plt(const Packet4f& a, Packet4f& b) { return _mm_cmplt_ps(a,b); }
							 | 
						|
								Packet2d plt(const Packet2d& a, Packet2d& b) { return _mm_cmplt_pd(a,b); }
							 | 
						|
								
							 | 
						|
								Packet4f pandnot(const Packet4f& a, Packet4f& b) { return _mm_andnot_ps(a,b); }
							 | 
						|
								Packet2d pandnot(const Packet2d& a, Packet2d& b) { return _mm_andnot_pd(a,b); }
							 | 
						|
								#endif
							 | 
						|
								}
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename T>
							 | 
						|
								STORMEIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v)
							 | 
						|
								{
							 | 
						|
								  #ifndef STORMEIGEN_VECTORIZE
							 | 
						|
								  return v.blueNorm();
							 | 
						|
								  #else
							 | 
						|
								  typedef typename T::Scalar Scalar;
							 | 
						|
								
							 | 
						|
								  static int nmax = 0;
							 | 
						|
								  static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr;
							 | 
						|
								  int n;
							 | 
						|
								
							 | 
						|
								  if(nmax <= 0)
							 | 
						|
								  {
							 | 
						|
								    int nbig, ibeta, it, iemin, iemax, iexp;
							 | 
						|
								    Scalar abig, eps;
							 | 
						|
								
							 | 
						|
								    nbig  = std::numeric_limits<int>::max();            // largest integer
							 | 
						|
								    ibeta = std::numeric_limits<Scalar>::radix; //NumTraits<Scalar>::Base;                    // base for floating-point numbers
							 | 
						|
								    it    = std::numeric_limits<Scalar>::digits; //NumTraits<Scalar>::Mantissa;                // number of base-beta digits in mantissa
							 | 
						|
								    iemin = std::numeric_limits<Scalar>::min_exponent;  // minimum exponent
							 | 
						|
								    iemax = std::numeric_limits<Scalar>::max_exponent;  // maximum exponent
							 | 
						|
								    rbig  = std::numeric_limits<Scalar>::max();         // largest floating-point number
							 | 
						|
								
							 | 
						|
								    // Check the basic machine-dependent constants.
							 | 
						|
								    if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5)
							 | 
						|
								      || (it<=4 && ibeta <= 3 ) || it<2)
							 | 
						|
								    {
							 | 
						|
								      eigen_assert(false && "the algorithm cannot be guaranteed on this computer");
							 | 
						|
								    }
							 | 
						|
								    iexp  = -((1-iemin)/2);
							 | 
						|
								    b1    = std::pow(ibeta, iexp);  // lower boundary of midrange
							 | 
						|
								    iexp  = (iemax + 1 - it)/2;
							 | 
						|
								    b2    = std::pow(ibeta,iexp);   // upper boundary of midrange
							 | 
						|
								
							 | 
						|
								    iexp  = (2-iemin)/2;
							 | 
						|
								    s1m   = std::pow(ibeta,iexp);   // scaling factor for lower range
							 | 
						|
								    iexp  = - ((iemax+it)/2);
							 | 
						|
								    s2m   = std::pow(ibeta,iexp);   // scaling factor for upper range
							 | 
						|
								
							 | 
						|
								    overfl  = rbig*s2m;          // overfow boundary for abig
							 | 
						|
								    eps     = std::pow(ibeta, 1-it);
							 | 
						|
								    relerr  = std::sqrt(eps);      // tolerance for neglecting asml
							 | 
						|
								    abig    = 1.0/eps - 1.0;
							 | 
						|
								    if (Scalar(nbig)>abig)  nmax = abig;  // largest safe n
							 | 
						|
								    else                    nmax = nbig;
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  typedef typename internal::packet_traits<Scalar>::type Packet;
							 | 
						|
								  const int ps = internal::packet_traits<Scalar>::size;
							 | 
						|
								  Packet pasml = internal::pset1<Packet>(Scalar(0));
							 | 
						|
								  Packet pamed = internal::pset1<Packet>(Scalar(0));
							 | 
						|
								  Packet pabig = internal::pset1<Packet>(Scalar(0));
							 | 
						|
								  Packet ps2m = internal::pset1<Packet>(s2m);
							 | 
						|
								  Packet ps1m = internal::pset1<Packet>(s1m);
							 | 
						|
								  Packet pb2  = internal::pset1<Packet>(b2);
							 | 
						|
								  Packet pb1  = internal::pset1<Packet>(b1);
							 | 
						|
								  for(int j=0; j<v.size(); j+=ps)
							 | 
						|
								  {
							 | 
						|
								    Packet ax = internal::pabs(v.template packet<Aligned>(j));
							 | 
						|
								    Packet ax_s2m = internal::pmul(ax,ps2m);
							 | 
						|
								    Packet ax_s1m = internal::pmul(ax,ps1m);
							 | 
						|
								    Packet maskBig = internal::plt(pb2,ax);
							 | 
						|
								    Packet maskSml = internal::plt(ax,pb1);
							 | 
						|
								
							 | 
						|
								//     Packet maskMed = internal::pand(maskSml,maskBig);
							 | 
						|
								//     Packet scale = internal::pset1(Scalar(0));
							 | 
						|
								//     scale = internal::por(scale, internal::pand(maskBig,ps2m));
							 | 
						|
								//     scale = internal::por(scale, internal::pand(maskSml,ps1m));
							 | 
						|
								//     scale = internal::por(scale, internal::pandnot(internal::pset1(Scalar(1)),maskMed));
							 | 
						|
								//     ax = internal::pmul(ax,scale);
							 | 
						|
								//     ax = internal::pmul(ax,ax);
							 | 
						|
								//     pabig = internal::padd(pabig, internal::pand(maskBig, ax));
							 | 
						|
								//     pasml = internal::padd(pasml, internal::pand(maskSml, ax));
							 | 
						|
								//     pamed = internal::padd(pamed, internal::pandnot(ax,maskMed));
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								    pabig = internal::padd(pabig, internal::pand(maskBig, internal::pmul(ax_s2m,ax_s2m)));
							 | 
						|
								    pasml = internal::padd(pasml, internal::pand(maskSml, internal::pmul(ax_s1m,ax_s1m)));
							 | 
						|
								    pamed = internal::padd(pamed, internal::pandnot(internal::pmul(ax,ax),internal::pand(maskSml,maskBig)));
							 | 
						|
								  }
							 | 
						|
								  Scalar abig = internal::predux(pabig);
							 | 
						|
								  Scalar asml = internal::predux(pasml);
							 | 
						|
								  Scalar amed = internal::predux(pamed);
							 | 
						|
								  if(abig > Scalar(0))
							 | 
						|
								  {
							 | 
						|
								    abig = std::sqrt(abig);
							 | 
						|
								    if(abig > overfl)
							 | 
						|
								    {
							 | 
						|
								      eigen_assert(false && "overflow");
							 | 
						|
								      return rbig;
							 | 
						|
								    }
							 | 
						|
								    if(amed > Scalar(0))
							 | 
						|
								    {
							 | 
						|
								      abig = abig/s2m;
							 | 
						|
								      amed = std::sqrt(amed);
							 | 
						|
								    }
							 | 
						|
								    else
							 | 
						|
								    {
							 | 
						|
								      return abig/s2m;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								  }
							 | 
						|
								  else if(asml > Scalar(0))
							 | 
						|
								  {
							 | 
						|
								    if (amed > Scalar(0))
							 | 
						|
								    {
							 | 
						|
								      abig = std::sqrt(amed);
							 | 
						|
								      amed = std::sqrt(asml) / s1m;
							 | 
						|
								    }
							 | 
						|
								    else
							 | 
						|
								    {
							 | 
						|
								      return std::sqrt(asml)/s1m;
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  else
							 | 
						|
								  {
							 | 
						|
								    return std::sqrt(amed);
							 | 
						|
								  }
							 | 
						|
								  asml = std::min(abig, amed);
							 | 
						|
								  abig = std::max(abig, amed);
							 | 
						|
								  if(asml <= abig*relerr)
							 | 
						|
								    return abig;
							 | 
						|
								  else
							 | 
						|
								    return abig * std::sqrt(Scalar(1) + numext::abs2(asml/abig));
							 | 
						|
								  #endif
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								#define BENCH_PERF(NRM) { \
							 | 
						|
								  float af = 0; double ad = 0; std::complex<float> ac = 0; \
							 | 
						|
								  StormEigen::BenchTimer tf, td, tcf; tf.reset(); td.reset(); tcf.reset();\
							 | 
						|
								  for (int k=0; k<tries; ++k) { \
							 | 
						|
								    tf.start(); \
							 | 
						|
								    for (int i=0; i<iters; ++i) { af += NRM(vf); } \
							 | 
						|
								    tf.stop(); \
							 | 
						|
								  } \
							 | 
						|
								  for (int k=0; k<tries; ++k) { \
							 | 
						|
								    td.start(); \
							 | 
						|
								    for (int i=0; i<iters; ++i) { ad += NRM(vd); } \
							 | 
						|
								    td.stop(); \
							 | 
						|
								  } \
							 | 
						|
								  /*for (int k=0; k<std::max(1,tries/3); ++k) { \
							 | 
						|
								    tcf.start(); \
							 | 
						|
								    for (int i=0; i<iters; ++i) { ac += NRM(vcf); } \
							 | 
						|
								    tcf.stop(); \
							 | 
						|
								  } */\
							 | 
						|
								  std::cout << #NRM << "\t" << tf.value() << "   " << td.value() <<  "    " << tcf.value() << "\n"; \
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void check_accuracy(double basef, double based, int s)
							 | 
						|
								{
							 | 
						|
								  double yf = basef * std::abs(internal::random<double>());
							 | 
						|
								  double yd = based * std::abs(internal::random<double>());
							 | 
						|
								  VectorXf vf = VectorXf::Ones(s) * yf;
							 | 
						|
								  VectorXd vd = VectorXd::Ones(s) * yd;
							 | 
						|
								
							 | 
						|
								  std::cout << "reference\t" << std::sqrt(double(s))*yf << "\t" << std::sqrt(double(s))*yd << "\n";
							 | 
						|
								  std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\n";
							 | 
						|
								  std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\n";
							 | 
						|
								  std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\n";
							 | 
						|
								  std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\n";
							 | 
						|
								  std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\n";
							 | 
						|
								  std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\n";
							 | 
						|
								  std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\n";
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s)
							 | 
						|
								{
							 | 
						|
								  VectorXf vf(s);
							 | 
						|
								  VectorXd vd(s);
							 | 
						|
								  for (int i=0; i<s; ++i)
							 | 
						|
								  {
							 | 
						|
								    vf[i] = std::abs(internal::random<double>()) * std::pow(double(10), internal::random<int>(ef0,ef1));
							 | 
						|
								    vd[i] = std::abs(internal::random<double>()) * std::pow(double(10), internal::random<int>(ed0,ed1));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  //std::cout << "reference\t" << internal::sqrt(double(s))*yf << "\t" << internal::sqrt(double(s))*yd << "\n";
							 | 
						|
								  std::cout << "sqsumNorm\t"  << sqsumNorm(vf)  << "\t" << sqsumNorm(vd)  << "\t" << sqsumNorm(vf.cast<long double>()) << "\t" << sqsumNorm(vd.cast<long double>()) << "\n";
							 | 
						|
								  std::cout << "hypotNorm\t"  << hypotNorm(vf)  << "\t" << hypotNorm(vd)  << "\t" << hypotNorm(vf.cast<long double>()) << "\t" << hypotNorm(vd.cast<long double>()) << "\n";
							 | 
						|
								  std::cout << "blueNorm\t"   << blueNorm(vf)   << "\t" << blueNorm(vd)   << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n";
							 | 
						|
								  std::cout << "pblueNorm\t"  << pblueNorm(vf)  << "\t" << pblueNorm(vd)  << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n";
							 | 
						|
								  std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\t" << lapackNorm(vf.cast<long double>()) << "\t" << lapackNorm(vd.cast<long double>()) << "\n";
							 | 
						|
								  std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\t" << twopassNorm(vf.cast<long double>()) << "\t" << twopassNorm(vd.cast<long double>()) << "\n";
							 | 
						|
								//   std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\t" << bl2passNorm(vf.cast<long double>()) << "\t" << bl2passNorm(vd.cast<long double>()) << "\n";
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								int main(int argc, char** argv)
							 | 
						|
								{
							 | 
						|
								  int tries = 10;
							 | 
						|
								  int iters = 100000;
							 | 
						|
								  double y = 1.1345743233455785456788e12 * internal::random<double>();
							 | 
						|
								  VectorXf v = VectorXf::Ones(1024) * y;
							 | 
						|
								
							 | 
						|
								// return 0;
							 | 
						|
								  int s = 10000;
							 | 
						|
								  double basef_ok = 1.1345743233455785456788e15;
							 | 
						|
								  double based_ok = 1.1345743233455785456788e95;
							 | 
						|
								
							 | 
						|
								  double basef_under = 1.1345743233455785456788e-27;
							 | 
						|
								  double based_under = 1.1345743233455785456788e-303;
							 | 
						|
								
							 | 
						|
								  double basef_over = 1.1345743233455785456788e+27;
							 | 
						|
								  double based_over = 1.1345743233455785456788e+302;
							 | 
						|
								
							 | 
						|
								  std::cout.precision(20);
							 | 
						|
								
							 | 
						|
								  std::cerr << "\nNo under/overflow:\n";
							 | 
						|
								  check_accuracy(basef_ok, based_ok, s);
							 | 
						|
								
							 | 
						|
								  std::cerr << "\nUnderflow:\n";
							 | 
						|
								  check_accuracy(basef_under, based_under, s);
							 | 
						|
								
							 | 
						|
								  std::cerr << "\nOverflow:\n";
							 | 
						|
								  check_accuracy(basef_over, based_over, s);
							 | 
						|
								
							 | 
						|
								  std::cerr << "\nVarying (over):\n";
							 | 
						|
								  for (int k=0; k<1; ++k)
							 | 
						|
								  {
							 | 
						|
								    check_accuracy_var(20,27,190,302,s);
							 | 
						|
								    std::cout << "\n";
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  std::cerr << "\nVarying (under):\n";
							 | 
						|
								  for (int k=0; k<1; ++k)
							 | 
						|
								  {
							 | 
						|
								    check_accuracy_var(-27,20,-302,-190,s);
							 | 
						|
								    std::cout << "\n";
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  y = 1;
							 | 
						|
								  std::cout.precision(4);
							 | 
						|
								  int s1 = 1024*1024*32;
							 | 
						|
								  std::cerr << "Performance (out of cache, " << s1 << "):\n";
							 | 
						|
								  {
							 | 
						|
								    int iters = 1;
							 | 
						|
								    VectorXf vf = VectorXf::Random(s1) * y;
							 | 
						|
								    VectorXd vd = VectorXd::Random(s1) * y;
							 | 
						|
								    VectorXcf vcf = VectorXcf::Random(s1) * y;
							 | 
						|
								    BENCH_PERF(sqsumNorm);
							 | 
						|
								    BENCH_PERF(stableNorm);
							 | 
						|
								    BENCH_PERF(blueNorm);
							 | 
						|
								    BENCH_PERF(pblueNorm);
							 | 
						|
								    BENCH_PERF(lapackNorm);
							 | 
						|
								    BENCH_PERF(hypotNorm);
							 | 
						|
								    BENCH_PERF(twopassNorm);
							 | 
						|
								    BENCH_PERF(bl2passNorm);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  std::cerr << "\nPerformance (in cache, " << 512 << "):\n";
							 | 
						|
								  {
							 | 
						|
								    int iters = 100000;
							 | 
						|
								    VectorXf vf = VectorXf::Random(512) * y;
							 | 
						|
								    VectorXd vd = VectorXd::Random(512) * y;
							 | 
						|
								    VectorXcf vcf = VectorXcf::Random(512) * y;
							 | 
						|
								    BENCH_PERF(sqsumNorm);
							 | 
						|
								    BENCH_PERF(stableNorm);
							 | 
						|
								    BENCH_PERF(blueNorm);
							 | 
						|
								    BENCH_PERF(pblueNorm);
							 | 
						|
								    BENCH_PERF(lapackNorm);
							 | 
						|
								    BENCH_PERF(hypotNorm);
							 | 
						|
								    BENCH_PERF(twopassNorm);
							 | 
						|
								    BENCH_PERF(bl2passNorm);
							 | 
						|
								  }
							 | 
						|
								}
							 |